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1 Introduction

Artificial intelligence (AI) has captured imaginations. Promises of rapid, even unparalleled,

productivity growth as well as new pathways for complementing humans have become com-

monplace. There is no doubt that recent developments in generative AI and large language

models that produce text, information and images—and Shakespearean sonnets—in response

to simple user prompts are impressive and even spellbinding. ChatGPT, originally released

on November 30, 2022, soon became the fastest spreading tech platform in history, with an

estimated 100 million monthly users only two months after launch.

AI will have implications for the macroeconomy, productivity, wages and inequality, but

all of them are very hard to predict. This has not stopped a series of forecasts over the last

year, often centering on the productivity gains that AI will trigger. Some experts believe

that truly transformative implications, including artificial general intelligence (AGI) enabling

AI to perform essentially all human tasks, could be around the corner.1 Other forecasters

are more grounded, but still predict big effects on output. Goldman Sachs (2023) predicts

a 7% increase in global GDP, equivalent to $7 trillion, and a 1.5% per annum increase in

US productivity growth over a 10-year period. Recent McKinsey Global Institute (2023)

forecasts suggest that generative AI could offer a boost as large as $17.1 to $25.6 trillion to

the global economy, on top of the earlier estimates of economic growth from increased work

automation. They reckon that the overall impact of AI and other automation technologies

could produce up to a 1.5 − 3.4 percentage point rise in average annual GDP growth in

advanced economies over the coming decade.2

Are such large effects plausible? And if there are going to be productivity gains, who will

1Korinek and Suh (2024) predict a “baseline” GDP growth of 100% over the next 10 years, and also
entertain the possibility of much higher “aggressive” AGI growth rates, such as a 300% increase in GDP.
Many others are seeing recent developments as a confirmation of the forecasts in Kurzweil (2005) about the
impending arrival of “singularity” and “explosive” economic growth (Davidson, 2021).

2Three caveats are in order. First, although most recent advances are in generative artificial intelligence,
the economic forces explored here apply to other types of AI, and estimates of exposed tasks I use come on
the basis of anticipated improvements in a range of AI-related technologies, including computer vision and
software building on large language models. Hence, I consider the numbers here to apply to all of artificial
intelligence and thus typically refer to “AI”, unless there is a reason to emphasize generative AI.
Second, I focus on the US economy because much of the existing evidence on microeconomic effects of

AI and prevalence of exposed tasks is from the United States. The impact on other industrialized nations
should be similar, whereas the consequences for the developing world are harder to ascertain and require
much more in-depth research.
Third, some commentators use “productivity” to refer to output per worker (or average labor productivity),

while others mean total factor productivity (TFP). Throughout, I distinguish between aggregate TFP and
GDP (per capita/worker) effects, and I use productivity improvement at the micro/task level as synonymous
to cost savings.
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be their beneficiary? With previous automation technologies, such as robotics, most gains

accrued to firm owners and managers, while workers in impacted occupations experienced

negative outcomes (e.g., Acemoglu and Restrepo, 2020a). Could it be different this time?

Some experts and commentators are more optimistic. A few “proof-of-concept” experimen-

tal studies document nontrivial productivity gains from generative AI, largely driven by

improvements for less productive or lower-performing workers (e.g., Peng et al., 2023; Noy

and Zhang, 2023; Brynjolfsson et al., 2023), and this has prompted some experts to be cau-

tiously optimistic (Autor, 2024), while others are forecasting a “blue-collar bonanza” (The

Economist, 2023).

This paper uses the framework from Acemoglu and Restrepo (2018, 2019b, 2022) to pro-

vide some insights for these debates, especially relevant for the medium-term (about 10-year)

macroeconomic effects of AI. I build a task-based model, where the production of a unique

final good requires a series of tasks to be performed, and these tasks can be allocated to ei-

ther capital or labor, which have different comparative advantages. Automation corresponds

to the expansion of the set of tasks that are produced by capital (including digital tools and

algorithms). In this framework, AI-based productivity gains—measured either as growth of

average output per worker or as total factor productivity (TFP) growth—can come from a

number of distinct channels (see Acemoglu and Restrepo, 2019a):

� Automation (or more precisely extensive-margin automation) involves AI models tak-

ing over and reducing costs in certain tasks. In the case of generative AI, various

mid-level clerical functions, text summary, data classification, advanced pattern recog-

nition, and computer vision tasks are among those that can be profitably automated.

� Task complementarity can increase the productivity in tasks that are not fully au-

tomated and may even raise the marginal product of labor. For example, workers

performing certain tasks may have better information or access to other complemen-

tary inputs. Alternately, AI may automate some subtasks, while at the same time

enabling workers to specialize and raise their productivity in other aspects of their job.

� Deepening of automation can take place, increasing the productivity of capital in tasks

that have already been automated. For example, an already-automated IT security

task may be performed more successfully by generative AI.

� New tasks may be created thanks to AI and these tasks may impact the productivity
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of the whole production process.3

In this paper, I focus on the first two channels, though I also discuss how new tasks en-

abled by AI can have positive or negative effects. I do not dwell on deepening of automation,

because the tasks impacted by (generative) AI are different than those automated by the

previous wave of digital technologies, such as robotics, advanced manufacturing equipment

and software systems.4 I also do not discuss how AI can have revolutionary effects by chang-

ing the process of science (a possibility illustrated by neural network-enabled advances in

protein folding and new crystal structures discovered by the Google subsidiary DeepMind),

because large-scale advances of this sort do not seem likely within the 10-year time frame

and many current discussions focus on automation and task complementarities.

I show that when AI’s microeconomic effects are driven by cost savings (equiva-

lently, productivity improvements) at the task level—due to either automation or task

complementarities—its macroeconomic consequences will be given by a version of Hulten’s

theorem: GDP and aggregate productivity gains can be estimated by what fraction of tasks

are impacted and average task-level cost savings. This equation disciplines any GDP and

productivity effects from AI. Despite its simplicity, applying this equation is far from trivial,

because there is huge uncertainty about which tasks will be automated or complemented,

and what the cost savings will be.

Nevertheless, as an illustrative exercise, I use data from a number of recent studies, in

particular, Eloundou et al. (2023) and Svanberg et al. (2024), as well as the experimental

studies mentioned above, to obtain some back-of-the-envelope numbers. Eloundou et al.

(2023) provide the first systematic estimates of what tasks will be impacted by generative

AI and computer vision technologies. Their methodology does not fully distinguish whether

the impact will take the form of automation or task complementarities, and does not provide

information on when we should expect these impacts to be realized and how large their cost

savings will be.5 For computer vision technologies, Svanberg et al. (2024) provide estimates

3New tasks in this framework also capture the possibility of productivity-enhancing reorganizing produc-
tion. The role of AI in enabling such reorganization is emphasized by, among others, Bresnahan (2019) and
Agrawal et al. (2023).

4Eloundou et al. (2023) report negative statistical associations between their measure of exposure to AI,
which I use below, and measures of exposure to robots and manual routine tasks.

5More specifically, I use the most granular information that Eloundou et al. (2023) present, which is their
“automation index”, coded with help from GPT-4. This index provides information on how much of the
activities involved in a task/occupation can be performed by AI. Although this index has somewhat greater
emphasis on automation, it does not systematically distinguish between automation and task complemen-
tarities. As I discuss further below and Eloundou et al. (2023) themselves note, their exposure measure
often captures the possibility that generative AI and related digital technologies can perform some of the
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of what fraction of tasks that are potentially exposed to AI can be feasibly automated in

different time frames.

I take Eloundou et al.’s estimates of tasks that are exposed to AI (without distinguishing

automation vs. task complementarities). I then aggregate this to the occupational level and

weight the importance of each occupation by its wage bill share in the US economy. This

calculation implies that 20% of US labor tasks are exposed to AI. I then use Svanberg et

al.’s estimate for computer vision tasks that, among all exposed tasks, 23% can be profitably

performed by AI (for the rest, the authors estimate that the costs would exceed the benefits).

I take the average labor cost savings to be 27%—the average of the estimates in Noy and

Zhang (2023) and Brynjolfsson et al. (2023)—and turn this into overall cost savings using

industry labor shares, which imply average overall cost savings of 14.4%.

This calculation implies that total factor productivity (TFP) effects within the next 10

years should be no more than 0.66% in total—or approximately a 0.064% increase in TFP

growth annually. If we add bigger productivity gains from Peng et al. (2023), which are less

likely to be broadly applicable, or incorporate further declines in GPU costs, this number

still remains around 0.9%.

To turn these numbers into GDP estimates, we need to know how much the capital stock

will increase due to AI. I start with the benchmark of a rise in the capital stock proportional

to the increase in TFP. This benchmark is consistent with the fact that generative AI does

not seem to require huge investments by users (beyond those made by designers and trainers

of the models). With these investment effects incorporated, GDP is also estimated to grow

by 0.93% − 1.16% over the next 10 years. When I assume that the investment response

will be similar to those for earlier automation technologies and use the full framework from

Acemoglu and Restrepo (2022) to estimate the increase in the capital stock, the upper bound

on GDP effects rises to around 1.4%−1.56%. Nevertheless, my framework also clarifies that

if the capital-output ratio increases in response to the TFP rise, this may increase GDP by

more than TFP, but does not additionally contribute to welfare, because the extra investment

comes out of consumption.6

I then argue that the numbers above may be overestimates of the aggregate productivity

benefits from AI, because existing estimates of productivity gains and cost savings are in

tasks that are “easy-to-learn”, which then makes them easy for AI. In contrast, some of the

subtasks in an occupation, enabling workers to focus on and specialize in other activities, and thus contains
both automation and task complementarity elements.

6In addition, if AI models continue to increase their energy requirements, this would contribute to mea-
sured GDP, but would not be a beneficial change for welfare.
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future effects will come from “hard-to-learn” tasks, where there are many context-dependent

factors affecting decision-making, and most learning is based on the behavior of human agents

performing similar tasks (rather than objective outcome measures). Productivity gains from

AI in these hard tasks will be less—though, of course, it is challenging to determine exactly

how much less. Using a range of (speculative) assumptions, I estimate an upper bound of

73% easy tasks among Eloundou et al.’s exposed tasks. I suppose that productivity gains

in hard tasks will be approximately one quarter of the easy ones. This leads to an updated,

more modest increase in TFP and GDP in the next 10 years that can be upper bounded by

0.53% and 0.90%, respectively.

New tasks created with AI can more significantly boost productivity. However, some of

the new AI-generated tasks are manipulative and may have negative social value, such as

deepfakes, misleading digital advertisements, addictive social media or AI-powered malicious

computer attacks. While it is difficult to put numbers on good and bad new tasks, based

on recent research I suggest that the negative effects from new bad tasks could be sizable.

I make a very speculative attempt using numbers on the negative welfare effects of social

media from a recent paper by Bursztyn et al. (2023). These authors find that consumers have

positive willingness to pay for using social media (in particular Instagram and TikTok) when

others are using it, but they would prefer that neither themselves nor others use it. Roughly

speaking, their estimates imply that revenue can increase by about $53 per user-month,

but this has a negative impact on total GDP/welfare equivalent to $19 per user-month.

Combining these numbers with an estimate of the fraction of activities that may generate

negative social value (in practice, revenues from social media and spending on attack-defense

arms races in IT security), I suggest that with more intensive use of AI, it is possible to have

nontrivial increases in GDP. For example, AI may appear to increase GDP by 2%, while in

reality reducing welfare by −0.72% (in consumption equivalent units).

Finally, I explore AI’s wage and inequality effects. My framework implies that produc-

tivity gains from AI are unlikely to lead to sizable wage rises. Moreover, even if AI improves

the productivity of low- and middle-performing workers (or workers with limited expertise

in complex tasks), I argue that, theoretically, this may not translate into lower inequality.

In fact, I show by means of a simple example how an increase in the productivity of low-

skill workers in certain tasks can lead to higher rather than lower inequality. Adapting the

general equilibrium estimates from Acemoglu and Restrepo (2022) to the setting of AI, I

find that the more intensive use of AI is unlikely to lead to substantial wage declines for
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affected groups, because AI-exposed tasks are more evenly distributed across demographic

groups than were the tasks exposed to earlier waves of automation. Nevertheless, I estimate

that AI will not reduce inequality and is likely to have a negative effect on the real earnings

of low-education women (especially white, native-born low-education women). My findings

also suggest that AI will further expand the gap between capital and labor income as a

whole.

In the conclusion, I argue that as originally suggested in Acemoglu and Restrepo (2018),

more favorable wage and inequality effects, as well as more sizable productivity benefits,

will likely depend on the creation of new tasks for workers in general and for middle- and

low-pay workers in particular. While this is feasible in theory and I have argued elsewhere

how it could be achieved (Acemoglu, 2021 and Acemoglu et al., 2023), I also discuss why

this does not seem to be the focus of artificial intelligence research at the moment.

In sum, it should be clear that forecasting AI’s effects on the macroeconomy is extremely

difficult and will have to be based on a number of speculative assumptions. Nevertheless,

the gist of this paper is that a simple framework can discipline our thinking and forecasts,

and if we take this framework and existing estimates seriously, it is difficult to arrive at very

large macroeconomic gains.

The rest of the paper is organized as follows. The next section outlines the concep-

tual framework I use throughout the paper and derives a number of theoretical insights

on aggregate productivity gains, investment responses, and wage and inequality effects. It

also discusses the crucial distinction between easy-to-learn and hard-to-learn tasks and their

productivity implications, and introduces the contrast between good and bad new tasks.

Section 3 provides a preliminary quantitative analysis of new AI breakthroughs within this

framework. It first presents a baseline (upper bound) estimate on the basis of the fraction

of existing tasks that are likely to be impacted by AI within the next 10 years and existing

estimates of cost savings (productivity improvements) from AI. It then refines this estimate

by introducing the distinction between easy-to-learn and hard-to-learn tasks and undertakes

a preliminary classification of AI-exposed tasks into the easy and hard categories. I also

make an even more speculative attempt at incorporating the macroeconomic implications of

bad new tasks into this framework. Finally, I report estimates on the wage and inequality

implications of recent AI advances. Section 4 concludes with a general discussion, while

the Appendix includes additional information on how tasks are classified into exposed and

non-exposed and easy-to-learn and hard-to-learn categories.
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2 Conceptual Framework

The model here builds on Acemoglu and Autor (2011) and Acemoglu and Restrepo (2018,

2019b, 2022), and I focus on the main elements of the framework, referring the reader to

these papers for further details and refinements. The economy is static and involves the

production of a unique final good, and all markets are competitive.7

The production of a unique final good takes place by combining a set of tasks, with

measure N , using the following production function

Y = B(N)

(∫ N

0

y(z)
σ−1
σ dz

) σ
σ−1

, (1)

where Y (z) denotes the output of task z for z ∈ [0, N ], σ ≥ 0 is the elasticity of substitution

between tasks and the parameter B(N) depends on N to capture the possible system-wide

effects of new tasks, though in what follows I will suppress this dependence to simplify the

notation. For now, the elasticity σ can take any value, but it is reasonable to presume σ ≤ 1,

so that tasks are gross complements. I later set the elasticity of substitution between tasks

to σ ≃ 0.5, as estimated by Humlum (2021) and also imposed in Acemoglu and Restrepo

(2022).

Tasks can be produced using capital or labor according to the production function

y(z) = ALγL(z)l(z) + AKγK(z)k(z) for any z ∈ [0, N ],

where AL and AK are labor-augmenting and capital-augmenting productivity terms, γL(z)

and γK(z) are labor’s and capital’s task-specific productivity schedules, and l(z) and k(z)

denote labor and capital allocated to performing task z. This task production function

implies that capital and labor have different productivities in different tasks, but within a

task they are perfect substitutes.8

7Acemoglu and Restrepo (2018) provide a dynamic version of this economy with capital accumulation
and endogenous technological choices, while Acemoglu and Restrepo (2022) provide a generalization with
multiple types of labor and multiple sectors, and Acemoglu and Restrepo (2023) consider a non-competitive
version of this economy. Extending the framework in any of these directions does not materially affect the
results I discuss here.

8One important simplification is to assume that tasks assigned to labor do not require any capital or
tools, which is clearly unrealistic. The online Appendix of Acemoglu and Restrepo (2018) shows that the
results are very similar if the task production function is modified such that:

y(z) = ALγL(z)
[
l(z)1−κkC(z)

κ
]
+AKγK(z)k(z),

where κ ∈ (0, 1) and kC(z) is labor-complementary capital in task z (while k(z) denotes capital used for
automating task z). Because κ < 1, tasks assigned to labor are still less intensive in capital than are
fully-automated tasks.
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Throughout, I assume that γL(z)/γK(z) is increasing in z, so that labor has a comparative

advantage in higher-indexed tasks. This implies that there exists a threshold I such that

tasks z ≤ I are produced with capital and those above this threshold are produced with

labor.

I normalize the total population to 1 and assume that different workers have different

units of effective labor. To simplify the discussion, I assume that there are two types of labor,

high-skill and low-skill, and there is no comparative advantage difference between these two

types of labor (I generalize this later). The only difference is that high-skill workers, which

make up a fraction ϕH of the population, have λH units of effective labor, while the remaining

ϕU = 1− ϕH low-skill workers have only λU < λH units of effective labor. This specification

ensures that both high-skill and low-skill workers could be performing some of the same

tasks. It also implies that wage inequality is pinned down by λH/λU—a feature I relax later.

I also assume that all labor is supplied inelastically, so I write the total supply of labor

as

ϕUλU + ϕHλH = L.

The labor market-clearing condition is

L =

∫ N

0

l(z)dz, (2)

and I denote the wage rate by w.

Capital is specialized for the tasks in which it is used, and I assume that capital of type

z is produced linearly from the final good with unit cost

R(z) = R(K)ρ(z), (3)

where

K =

∫ N

0

k(z)dz

is the total capital stock of the economy. All firms take the cost of capital for task z,

R(z), as given. The first term in (3) implies that the required rate of return on capital can

increase when the capital stock of the economy is larger and the second term is task-specific,

representing the possibility that different types of capital could have different costs. For

tasks that are not yet technologically automated—meaning that they cannot be produced

by capital—we can either set γK(z) = 0 or take ρ(z) to be very large.

Finally, I assume that there exists a (non-satiated) representative household that con-

sumes the final good (net of capital expenditures) and I denote the consumption of this

household by C.
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2.1 Equilibrium

I focus on a competitive equilibrium, which satisfies the following usual conditions:

� The allocation of tasks z ∈ [0, N ] is cost-minimizing. That is, task z ∈ [0, N ] is

produced by labor if and only if

w

ALγL(z)
<

R(z)

AKγK(z)
.

� The amount of capital k(z) is chosen to maximize Y − R(z)k(z), where Y is given as

in (1).

� The labor market clears. That is, (2) holds.

Notice that the first condition imposes an innocuous tie-breaking rule that when indiffer-

ent, firms use capital for performing a task. Given this tie-breaking rule, all tasks z > I will

be performed by labor (i.e., l(z) = 0 for all z ≤ I and k(z) = 0 for all z > I). Whether this

is high- or low-skill labor is indeterminate in the baseline model, so I focus on the overall

amount of effective labor units.

In a competitive equilibrium, all tasks performed by labor must have

B
σ−1
σ A

σ−1
σ

L γL(z)
σ−1
σ l(z)−

1
σY

1
σ = w. (4)

This implies that for any two tasks z > I and z′ > I,

l(z)

l(z′)
=

γL(z)
σ−1

γL(z′)σ−1
. (5)

Notice that when σ < 1, less labor is allocated to tasks in which labor’s productivity is

higher—a feature whose implications I will emphasize later. Equation (5), combined with

the labor market-clearing condition (2), implies

l(z) =
γL(z)

σ−1∫ N

I
γL(z)σ−1dz

L. (6)

Moreover, with a similar reasoning for any task z < I, only capital is used, and the

first-order condition for capital intensity is simply

B
σ−1
σ A

σ−1
σ

K γK(z)
σ−1
σ k(z)−

1
σY

1
σ = R(K)ρ(z). (7)
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Combining (6) and (7) with (1), GDP or total output can be written as

Y =


(∫ N

I
γL(z)

σ−1dz
) 1

σ
(BALL)

σ−1
σ

1−
(∫ I

0

(
γK(z)

R(K)ρ(z)

)σ−1

dz

)
Aσ−1

K B
σ2−1

σ


σ

σ−1

. (8)

The denominator here is due to the roundabout nature of production, and I assume that(∫ I

0

(
γK(z)

R(K)ρ(z)

)σ−1

dz

)
Aσ−1

K B
σ2−1

σ < 1 (9)

to ensure that output is finite in this economy. (Otherwise, because output linearly produces

machines, which then produce output, overall output can reach infinity). With an identical

argument to that in Acemoglu and Restrepo (2022), an equilibrium exists and is unique,

provided that (9) is satisfied.

2.2 How AI Could Affect Production

Before completing the characterization of equilibrium, I discuss how AI could affect produc-

tion in this economy.

1. AI enables further (extensive-margin) automation, increasing I. Such automation could

be triggered either because AI reduces the cost of capital for some marginal tasks (i.e.,

tasks slightly above I) or increases the effectiveness of machinery or algorithms per-

forming some marginal tasks, thus raising γK(z) for some z above I. Obvious examples

of this type of automation include generative AI tools such as large language models

taking over simple writing, translation and classification tasks as well as somewhat

more complex tasks related to customer service and information provision, or com-

puter vision technologies taking over image recognition and classification tasks.

2. AI can generate new task complementarities, raising the productivity of labor in tasks

it is performing.9 For example, AI could provide better information to workers, directly

increasing their productivity. This possibility could be modeled as AI reducing the cost

of complementary capital kC(z) in some tasks z > I in the more general formulation in

footnote 8. Alternatively, AI could automate some subtasks (such as providing ready-

made subroutines to computer programmers) and simultaneously enable humans to

9I refer to this channel as “tasks complementarities,” rather than “labor augmentation,” because it can
alter the distribution of subtasks workers perform and complement worker productivity in some of these
subtasks, and also because “augmentation” is sometimes used to refer to the introduction of complementary
activities for labor, such as new tasks, which have very distinct effects, as I explain.
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specialize in other subtasks, where their performance improves. This channel would

require the explicit modeling of the range of subtasks making up each task. In this case,

new AI technologies would perform some of these subtasks and do so with sufficiently

high productivity, so that the subtask-level displacement would be weaker than the

productivity gains, expanding the demand for labor and the marginal productivity

of labor in these tasks. The possibility that the productivity effect could be larger

than the displacement effect and expand labor demand is the same as in the basic

models of automation, as exposited in Acemoglu and Restrepo (2018, 2019b). Even

more interestingly, AI may enable workers to specialize in the non-automated subtasks

and raise their expertise in these activities (e.g., when humans spend less time in

writing standard subroutines, they can become better at other parts of programming).

I represent task complementarities by an increase in γL(z) in some tasks z ≤ I, or

when they happen in all tasks, by an increase in AL.

3. AI could induce deepening of automation—meaning improving performance, γK(z), or

reducing costs, ρ(z), in some previously capital-intensive tasks (tasks z ≤ I). Examples

include IT security, automated control of inventories, and better automated quality

control (see Acemoglu and Restrepo, 2019a).

4. AI can generate new labor-intensive products or tasks, which corresponds to an increase

in N . As argued in Acemoglu and Restrepo (2020b), Acemoglu (2021) and Acemoglu

et al. (2023), there are many pathways for such new tasks. Later I also discuss the case

where some of these new products and tasks can be manipulative and have negative

social value.

The effects of new AI tools will depend on the extent of each one of these effects, and I

will try to provide more specificity on these possibilities later. In the rest of this section, I

derive the consequences of different effects of AI.

2.3 Equilibrium Wages and Comparative Statics

As a first step, let us combine (4) and (6), so that the equilibrium wage can be expressed as

w =

(
Y

L

) 1
σ

(BAL)
σ−1
σ

(∫ N

I

γL(z)
σ−1dz

) 1
σ

. (10)

This equation is intuitive. The first term shows that the wage is proportional to labor

productivity (raised to the power 1/σ), and the second term captures the contribution to

11



the marginal productivity of labor coming from Hicks-neutral and labor-augmenting tech-

nologies, while the third term represents the contribution of the allocation of tasks to the

marginal productivity of labor. The effect of any small technological change (potentially

altering multiple dimensions of the production technology, such as B; AL and AK ; γL(z) and

γK(z); and I and N) can then be written as:

d lnw =
1

σ
d ln

(
Y

L

)
+

σ − 1

σ
(d lnB + d lnAL) +

1

σ
d ln

(∫ N

I

γL(z)
σ−1dz

)
. (11)

The effect of further extensive-margin automation—an increase in I—is given by

d lnw

dI
=

1

σ

d lnY

dI
− 1

σ

γL(I)
σ−1(∫ N

I
γL(z)σ−1dz

) .
In general, this expression has ambiguous sign, so automation can increase or reduce wages.

More specifically, there are two opposing effects (Acemoglu and Restrepo, 2018, 2019b):

(a) automation always produces a positive effect on wages (and labor demand) because it

increases productivity (or equivalently, reduces costs). This positive productivity effect is

represented by the first term; (b) simultaneously, automation displaces workers from the

tasks they used to perform. The negative displacement effect is represented by the second

term. In the special case where R(K) is constant, it can be verified that automation increases

wages. This is not the case, in general, when R(K) is increasing, as shown in Acemoglu and

Restrepo (2018), because the displacement effect can be larger than the productivity gains.10

Overall, the impact of (extensive-margin) automation on the equilibrium wage is closely

tied to its productivity effect, to which I next turn.

Before doing so, I also note that the effects of task complementarities may be a little

more complex than typically assumed. Even though an increase in γL(z) raises the marginal

physical product of labor, the equilibrium wage is determined by the value of the marginal

product of labor, which depends on the adjustment of task prices. As tasks produced by

labor become more abundant/easier to perform, these task prices are reduced, and in the

empirically relevant case where σ < 1, task prices decline more than the increase in physical

productivity. The equilibrium wage may still increase because of productivity gains, but

10In particular, for any differentiable constant returns to scale production function F (K,L), Euler’s the-
orem implies: F (K,L) = wL + RK. Suppose R is fixed. Then any change in technology that increases

F (K,L) at the initial factor supplies must increase w = F (K,L)−RK
L . This is not the case when K is fixed,

because R can increase more than F (K,L). In Acemoglu and Restrepo (2018, 2019b), the capital stock is
taken as given, so a negative impact is possible.
In neoclassical growth models with exponential discounting and time-separable preferences, R is fixed in

the long run. However, Acemoglu et al. (2024) show that with more general preferences, R tends to increase
following automation and other technological changes, so a negative wage effect is possible.
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the benefits to labor may be limited overall. For example, holding I and N constant, an

increase in AL will leave wages constant when σ = sK where sK denotes the capital share

in national income (Acemoglu and Restrepo, 2018). When σ < sK , higher AL can actually

reduce real wages. Since sK ≃ 0.4 currently in the US economy, Humlum’s estimates of

σ mentioned above, of about 0.5, imply that task complementarities or labor-augmenting

technological improvements will not raise wages much. Even when they increase wages,

these technological shifts reduce the labor share, just like automation does (Acemoglu and

Restrepo, 2018, 2019b).

Finally, I note that deepening of automation (which is less likely to be relevant in the

case of AI for the reasons discussed in the Introduction) and new tasks always increase wages

and the latter always raises the labor share of national income as well (and thus tends to

narrow the gap between capital and labor income). I return to a discussion of new tasks

later.

2.4 Hulten’s Theorem

The nexus of the many effects of AI on the economy is its impact on productivity. To

gauge the extent of this impact, we can appeal to Hulten’s theorem, which provides a simple

formula for competitive economies with constant returns to scale, specifying how micro-

level productivity improvements translate into macro changes. Since the economy here is

competitive, this theorem applies and disciplines the productivity effects. I now explain this

theorem and for ease of exposition, I first take the capital stock of the economy, K, as given.

Consider an arbitrary small change in all/any aspects of technologies (B; AL and AK ; γL(z)

and γK(z); and I and N), so that the potential effects of AI based both on automation

and complementarities in existing tasks are taken into account. Recall that GDP can be

equivalently expressed as the price-weighted aggregate of task outputs:

Y =

∫ N

0

p(z)y(z)dz.

Since I am considering small changes in technology and the competitive equilibrium is ef-

ficient, the impact of all reallocations of factors across tasks and indirect effects via prices
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will be second-order and can be ignored in computing GDP changes.11 Then:

dY =

∫ N

0

p(z)dy(z)dz, and thus

d lnY =
dY

Y
=

∫ N

0

p(z)y(z)

Y

dy(z)

y(z)
dz =

∫ N

0

χ(z)d ln y(z)dz,

where the last equality defines χ(z) = p(z)y(z)/Y as the GDP share of task z. Recalling

that since capital and labor are fixed, this is also the total factor productivity (TFP) change,

I write

d lnTFP = d lnY |K =

∫ N

0

χ(z)πL(z)dz, (12)

where πL(z) = d ln y(z) is the productivity improvement or cost savings in task z driven by

AI. I emphasize once more that these cost savings could be rooted in automation or task

complementarities. Total effect on GDP is given by

d lnY = d lnTFP + sKd lnK, (13)

where sK is the capital share of GDP.12 This derivation also clarifies that (12) and (13) apply

regardless of the task-level production functions, and thus are more general than the wage

and inequality results reported above.

If the main impact of AI on productivity is via automation, then πL(z)’s are cost savings

as capital is substituted for labor. These should not be huge. In the case of robots, expert

reports put cost savings at about 30% of labor costs (see Acemoglu and Restrepo, 2020a),

though there are reasons to expect that cost savings from AI could be smaller than this,

as I discuss later. Estimates from Noy and Zhang (2023) and Brynjolfsson et al. (2023),

which I review in greater detail below, suggest numbers in the same ballpark—about 27% of

labor costs.13 Although it is not clear whether these come from extensive-margin automation

11Namely, change in real GDP can be expressed as the change in the value of the objective function
of the social planner (e.g., the utility function of the representative household if one exists). Then the
Lagrange multipliers on task-level resource constraints are equivalent to the prices and can be taken as given
in evaluating the effects of small changes in parameters/technology on the maximized value of this objective
function, by the envelope theorem. See Hulten (1978).

12The contribution of capital to output growth can also be derived in the general case, just like Hulten’s
theorem. In particular, for any constant returns to scale production function F (K,L|A), where A is a
technology shifter, we have d lnY/dA = d lnF (K,L|A)/dA + (d lnF (K,L)/dK) · dK/dA. The first term
d lnF (K,L|A)/dA is d lnTFP. Competitive factor markets imply d lnY = (RK/Y )d lnK, and thus d lnY =
d lnTFP+sKd lnK. Moreover, d ln sK = d lnK − d lnY , and hence d lnY = (d lnTFP+sKd ln sK)/(1− sK).
When the capital-output ratio (or equivalently the capital share) remains constant in response to changes
in technology, then d lnY = d lnTFP/(1− sK), which is the first approximation I use. Later, I estimate by
how much the capital-output ratio is predicted to increase due to automation and update this estimate.

13Peng et al. (2023) estimate even larger effects on how quickly certain programming tasks can be com-
pleted. But these refer to a very narrow set of tasks—subroutines that GitHub Copilot can write in common
programming languages—and are thus less broadly applicable, and I consider them in robustness checks.
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or task complementarities, this distinction is less important for the productivity effects, as

noted above. In practice, labor cost savings need to be translated into overall cost savings,

which can be done using the share of labor in overall costs for each industry. For example,

if the share of labor in industry i is siL, then labor cost savings of πi
L will translate into an

overall cost savings of πi = siLπ
i
L. Taking the average of these across industries, and denoting

this economy-wide cost savings by π̄, I can write

d lnTFP = π̄ × GDP share of tasks impacted by AI. (14)

I discuss below how this share can be estimated from recent studies on which occupations

and tasks will be impacted by AI.

2.5 Easy Tasks and Hard Tasks

As noted above, the proof-of-concept studies Peng et al. (2023), Noy and Zhang (2023), and

Brynjolfsson et al. (2023) have focused on tasks where AI could have clear benefits and where

there were already sophisticated applications (such as GitHub Copilot for the first study)

or where some businesses were already making an effort to use generative AI (as in the

customer service application of the third study). I now argue that estimates from tasks that

are relatively easy for current AI technologies, even if reliable within their chosen context,

cannot be directly extrapolated to the rest of the economy. More generally, it is useful to

distinguish between “easy-to-learn tasks” where outside learning (and thus learning by AI

models) is easy from those where gaining expertise on the basis of outside observation is

hard. Easy-to-learn tasks, which are relatively straightforward for (generative) AI to learn

and implement, are defined by two characteristics:

� there is a reliable, observable outcome metric, and

� there is a simple (low-dimensional) mapping between action and the outcome metric.

How to boil an egg (or providing instructions for boiling an egg), the verification of

the identity of somebody locked out of a system or the composition of some well-known

programming subroutines are easy tasks. The desired outcome—an egg that is boiled to

the desired level, allowing only authorized people to access the system, or whether the

subroutine works or not—is clear. In none of these cases do the successful outcomes depend

on the complex interaction of many dimensions of actions. With reliable, objective measures

of success (well boiled egg, no security breach given the ground truth of authorized people,
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or a subroutine that does not crash), AI models can learn to perform well in a relatively

straightforward manner. Beyond this, AI models can also learn from human actions, because

there are expert humans who perform well in these tasks, such as expert programmers, and

because objective measures of success are available, experts can be identified.14

“Hard tasks” typically do not have a simple mapping between action and desired outcome.

In hard problems, what leads to the desired outcome in a given problem is typically not

known and strongly depends on contextual factors, or the number of relevant contexts may

be vast, or new problem-solving may be required. Additionally, there is typically not enough

information for the AI system to learn or it is unclear exactly what needs to be learned.

Diagnosing the cause of a persistent cough and proposing a course of treatment is a hard

problem. There are many complex interactions between past events that may be the cause

of the lingering cough and many rare conditions that should be considered. Moreover,

there is no large, well-curated data set of successful diagnoses and cures. In hard tasks, AI

models can still learn from human decision-makers, but because there is no clear metric of

success, identifying and learning from workers with the highest level of expertise will not be

straightforward either. As a result, there will be a tendency for the performance of AI models

to be similar to the average performance of human decision-makers, limiting the potential

for large productivity improvements and cost savings.

AI productivity gains observed so far are from easy tasks. It is reasonable to expect

that productivity gains in hard tasks are more limited, at least at first. Productivity gains

in easy tasks result from AI models performing these tasks more or less at the same level

as expert workers and/or at lower cost than humans. For example, in the Noy and Zhang

(2023) study, expert workers are those that are able to summarize and write reasonably well.

The desired outcome in this case is straightforward to determine and does not require new

problem-solving efforts (this may have been different if the writing tasks were more complex

14The hard vs. easy distinction is different from the routine vs. non-routine distinction introduced in
Autor et al. (2003). Routine tasks are those that involve repeated performance of the same activities (such
as knitting or switchboard operations) in stable, predictable environments. The use of digital technologies in
these tasks involves step-by-step programming of relevant software and hardware. A significant number of
routine tasks have already been automated, whereas AI’s promise is its ability to perform non-routine tasks,
as also emphasized by Susskind (2020). Some non-routine tasks such as parts of computer programming or
writing of simple text are easy-to-learn, while others that require more context-specific decisions and where
metrics of successful performance are scarce would be much harder to learn by outside observation.
Crucially, “easy tasks” in this sense need not be easy for humans. In fact, cost savings from easy tasks

will be most pronounced when they are expensive for humans to perform. Conversely, some hard tasks,
such as those that are based on intuition, experience and judgment, may be relatively straightforward for
humans because they do not learn to perform these tasks on the basis of outside observation alone. This is
the reason why cost savings relative to human performance are likely to be limited in hard tasks.
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or required “creativity”). Generative AI models, such as GPT-4, are trained on vast amounts

of this type of writing, making this a clear example of an easy task. Productivity gains in

this case come from the fact that lower-expertise or less-skilled workers can be brought up to

the level of more expert workers at little cost and the majority of the workers are helped to

perform their assigned tasks more quickly. In easy problems, there may even be additional

productivity gains from AI models discovering action combinations that were not typically

tried or known by expert humans.15

There are several barriers to productivity gains in hard tasks. First, the lack of a simple

mapping between action and desired outcome will make it much more difficult to train AI

models, and early automation efforts and even human-complementary use of AI may be

hampered by this slow learning, delaying any productivity gains. Second, human comple-

mentarity may be much harder to achieve. When there is no good information on what the

desired outcome is (e.g., what was the right diagnosis for the persistent cough?), most of

the training data of AI models will come from how humans act in similar circumstances.

As a result, learning from humans will not lead to better than human performance and is

unlikely to generate new complementarities and reveal different insights than what humans

are already doing.16

If the premises of this section—that productivity gains will be slower in hard tasks than

in easy tasks in the next 10 years and tasks impacted by AI in the near future will be harder

than those today—are true, then (14) needs to be adjusted in an obvious way to account for

15For instance, suppose humans typically start boiling the water with the egg inside, and it reduces
variability if the egg is placed inside the saucepan after the water has boiled, then this is something some
AI models may discover. AlphaZero’s discovery of new effective chess moves can be viewed as an example
of the same phenomenon, even if it is in the context of a much more complex and interesting problem.
Looked at it this way, AlphaFold’s big success in protein folding can be considered to have both easy

and hard aspects. On the hard side, protein folding is a highly multidimensional problem, with no simple
mapping between action and desired outcome. On the easy side, however, the desired outcome is observed,
so with large amount of computing power, it is possible for an AI model to do even better than humans, as
AlphaFold managed to do.

16Mathematically, the general learning problem can be formulated as follows. There is a mapping for
outcomes specified as f : X×Z → Y , where X is the space of actions and Z denotes the space of “contexts”,
and Y is the set of possible outcomes. Observed outcomes are noisy versions of the true outcomes in Y , with
some noise process which I do not need to specify here. The mapping f is unknown.
In principle, there are two ways in which AI can be trained in such a problem. First, with sufficient

observations on Y and combinations of inputs from X × Z, the AI model may learn the entire function f
or some restricted version thereof. Second, if Y is not observable, then the AI model may be trained from
human choices, which can be summarized by a correspondence G : Z ⇒ X, specifying the possible actions
that humans take when confronted with context Z. Either problem can be challenging if X ×Z is very high
dimensional. However, the latter type of learning is less likely to lead to something different and better than
what humans were doing already. It can sometimes ensure performance at the level of expert humans, if
these can be identified, but lack of reliable outcome data may also make it difficult to identify expertise.
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which fraction of affected tasks are easy and hard. Specifically, denoting the fraction of easy

tasks among those that are impacted by AI as µE, and the average cost savings for easy and

hard tasks, respectively, as π̄E and π̄H , (14) becomes

d lnTFP =
(
µEπ̄E + (1− µE)π̄H

)
×GDP share of tasks impacted by AI. (15)

I also attempt to provide estimates using this updated TFP equation below, which will lead

to gains that are about 25% less than those that do not take the distinction between easy

and hard tasks into account.

2.6 Investment Responses

To go from TFP responses to total GDP responses, we need to see how much capital increases.

This is also relevant for understanding what magnitude of an investment boom generative

AI may trigger.

With this aim, consider a change in technology, for example due to AI. Its effects on

capital and investment can be gleaned from (7), which implies

k(z) =
Bσ−1Aσ−1

K γK(z)
σ−1Y

(R(K)ρ(z))σ
,

and hence

d ln k(z) = (σ−1)d lnB+(σ−1)d lnAK+(σ − 1) d ln γK(z)+d lnY −σd lnR(K)−σd ln ρ(z).

(16)

In what follows, I suppose that B and AK do not change. If AI significantly improves the

practice of science and invention and/or creates new high-productivity tasks, such changes

may occur in the future. But I assume that they are constant within the next 10 years.

First, consider the use of AI in some task z < I, meaning that AI adds to and improves

the performance of existing capital equipment in tasks already performed by capital.17 Then:

d ln k(z) = (σ − 1) d ln [AK · γK(z)] + d lnY − σd lnR(K).

Notice, however, that when σ < 1, and in particular for the empirically-plausible value of

σ = 0.5, the first term is negative—an increase in the productivity of AI-augmented capital

in capital-intensive tasks reduces investment and the equilibrium capital stock. The last

term is also nonpositive, provided that total investment increases. Hence, a natural upper

17The expression for the case in which labor-intensive tasks also use capital, as in footnote 8, is similar
and leads to the same conclusion.
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bound for the proportional increase in the capital stock of tasks already performed by capital

is the proportional increase in output.

Additionally, if I increases, investment will jump from zero to a positive amount in the

newly-automated tasks.18 Because in the estimates I report below, only a modest fraction

of tasks will be automated with AI, this increase may be small as well. Hence, I start with a

first estimate that takes the proportional increase in the capital stock to be the same as the

increase in aggregate productivity. I then provide another estimate incorporating the full

structure of between-industry and between-task substitution, based on the framework and

results of Acemoglu and Restrepo (2022). This will enable me to estimate implied changes

in the capital share and then use the expressions in footnote 12 to derive updated investment

response and GDP estimates.

I finally note that it is straightforward to show that consumer welfare (and consump-

tion) in this economy is proportional to TFP divided by one minus the capital share (i.e.,

d lnC = d lnTFP/(1− sK)). In particular, if the capital-output ratio rises and the increase

in GDP is more pronounced than that implied by equation (13), then the GDP response

would overstate the increase in consumer welfare, as investment comes at the expense of

consumption (Acemoglu and Restrepo, 2022).

2.7 New Good Tasks

Adding new tasks will expand productivity, and this effect could be in principle larger than

the cost savings due to automation and task complementarities. In addition, new tasks will

tend to increase wages. In particular, using the same steps as before,

d lnw

dN
=

1

σ

d lnY

dN
+

1

σ

γL(N)σ−1(∫ N

I
γL(z)σ−1dz

) +
σ − 1

σ

B′(N)

B(N)
. (17)

This is always positive and could be large. Note also that the wage and productivity

impact of new tasks can be potentially larger than cost savings in existing tasks, and this

is particularly likely to be the case when new tasks improve the entire production process

(as captured by the B term), or when they add new sources of cost improvements or com-

plementary functions. Despite new tasks’ central role in wage and productivity growth and

in reducing labor income inequality (see Acemoglu and Restrepo, 2018, and Autor et al.,

18Around I, this amount is given by k(I) =
Bσ−1Aσ−1

K γK(I)σ−1Y

(R(K)ρ(I))σ . If labor-intensive tasks were previously

using capital as well, then the jump would be smaller but still positive.
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2024), I will not focus on new good tasks generated by AI for the reasons discussed in detail

in the Conclusion.

2.8 New Bad Tasks

AI may generate new tasks that increase revenue, but reduce consumer utility, such as

through addiction or manipulation, or in the context of production, via security attacks by

malicious actors. To capture this, let us suppose that welfare is given by W = C − E,

where the second term is an externality, for example from misinformation or manipulative

activities, as I discuss below. In that case, the welfare effects of new tasks generated by AI

will be
dW
dN

=
dY

dN
− dE

dN
. (18)

Although it is difficult to ascertain the magnitude of such negative welfare effects, I argue,

based on some recent studies, that they may be nontrivial. Specifically, I use estimates on

the relative magnitudes of the two terms in (18) and proxy for the magnitude of the first term

by the revenues of tasks where AI can produce new bad tasks or socially harmful activities.

2.9 Wage and Inequality Implications of AI

A number of commentators and experts are cautiously optimistic that advances in generative

AI could be beneficial for labor or at the very least not impact workers as adversely as

previous waves of digital technologies, such as robotics and software systems, which were

predominantly used for automation. There are three potential pathways via which such

optimism may be realized.

1. AI can enable productivity increases in tasks currently produced by labor. This is the

task-complementarities channel and can be captured either by an increase in AL or an

increase in γL(z) for a subset of the tasks that are automated or by increases in λU

and λH (which, recall, are the productivities of unskilled and highly-skilled workers).

However, when σ < 1, these types of productivity improvements will reduce the labor

share, and thus inequality between capital and labor will increase.

2. If AI generates large productivity gains, it may increase wages even though it reduces

the labor share (Acemoglu and Restrepo, 2018, 2019b). This channel thus critically

hinges on the magnitude of the productivity effects discussed above, but in any case,

always increases inequality between capital and labor.
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3. As already discussed, some early studies show that within narrow occupations, lower-

performing or lower-expertise workers are the ones benefiting from generative AI. This

raises the possibility that AI could be more complementary to lower-skill workers and

may reduce labor income inequality. In my framework, this would be captured by an

increase in λU relative to λH . However, even in this case, inequality between capital

and labor will rise (provided that σ < 1).

4. If AI created new (good) tasks, these would reduce inequality between capital and

labor, and if enough new tasks were targeting lower-skill workers, this could also reduce

labor income inequality (Acemoglu and Restrepo, 2018).

I now argue theoretically that there are several reasons why 1 and 2 listed here are unlikely

to be major sources of wage growth or significant limits on inequality. First consider a 1%

increase in AL (or an equivalent increase in γL(z) for labor-intensive tasks). As explained

above, this may not increase wages at all, or may lead to only small wage increases. In

fact, from equation (11), abstracting from the productivity effect, the direct impact on the

equilibrium wage will be a (σ − 1)/σ% change. In the plausible case where σ < 1, this is

negative. The overall impact may still be an increase in wages because of the productivity

effect, but as already noted, when σ is approximately equal to the share of capital in national

income, the overall impact will be essentially zero. In conclusion, without the creation of a

sufficient number of new tasks, inequality between capital and labor will increase and wage

rises may be limited.

What about a reduction in inequality because lower-skill workers benefit more? In the

model here, the earnings of high-skill workers relative to low-skill workers is always pinned

down at λH/λU . So if new technologies reduce this ratio, they will reduce the gap between

high-skill and low-skill workers. But even this conclusion needs to be qualified. Acemoglu and

Restrepo (2022) show that in more general settings, with multiple skill groups, there will be

ripple effects whereby impacted demographic groups can then compete for tasks previously

performed by other groups. In such a situation, an overall increase in labor productivity

of both high-skill and low-skill workers in some tasks can lead to their displacement from

these tasks, and then the ripple effects can, in principle, affect low-skill workers even more

adversely than high-skill workers.

While such adverse effects on low-skill workers are a general possibility in the framework

of Acemoglu and Restrepo (2022), I am not aware of worked-out examples where an increase

in the productivity of low-skill workers increases inequality. I now provide such an example.
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2.10 How Greater Low-Skill Productivity Can Lead to Higher In-
equality

Let me illustrate this possibility with a simple example, by relaxing the assumption that there

are no comparative advantage differences between high-skill and low-skill workers. Suppose

that the economy starts from an equilibrium in which tasks below some I are performed

by capital, and tasks between I and N are performed by a combination of high-skill and

low-skill workers. In particular, suppose that low-skill workers have a comparative advantage

in tasks between I and I∗, and denote their (constant) productivity in these tasks by λU ,

while the productivity of high-skill workers in these tasks is also constant and equal to λH .

Suppose also that the relative productivity of high-skill workers in tasks between I∗ and

N is ω > λH/λU—indicating that high-skill workers have a comparative advantage in higher-

indexed tasks. However, because there is no strict comparative advantage, the equilibrium

may involve both types of workers performing some of the same tasks.19 Assume also that

the elasticity of substitution between tasks is σ < 1.

Let us start with an equilibrium in which both high-skill and low-skill workers perform

tasks z ∈ (I, I∗], while only high-skill workers perform tasks z ∈ (I∗, N ]. In this initial equi-

librium, the relative wage of skilled workers will be pinned down by the relative productivities

of the two types of workers in the tasks they are both performing—i.e., z ∈ (I, I∗]—and is

given by λH/λU .

Suppose that labor productivity in z ∈ (I, I∗] increases due to advances in AI, and this

also is more helpful for lower-skilled workers, and so λH/λU declines. I now show that

these advances could boost inequality. Because σ < 1, the prices of tasks z ∈ (I, I∗] will

decline more than the increase in physical productivity of labor, and there will be less labor

assigned to these tasks. If this effect is significant, all high-skill workers may be allocated

away from these tasks, and the amount of labor demanded in these tasks may fall short of

the supply of low-skill workers. In this case, the post-AI allocation may involve only low-

skill workers performing tasks z ∈ (I, I∗], while both low-skill and high-skill workers perform

tasks z ∈ (I∗, N ]. Then, regardless of how much λH/λU declines, the relative wage of skilled

workers will be determined by the tasks that both types of workers are performing, which

are now those above I∗, and thus will be equal to ω > λH/λU . Hence, inequality increases

19This structure makes the example similar to one that has a finite number of tasks—in this instance,
three tasks. But I use the setting with a continuum of tasks for continuity with the rest of the paper. The
“paradoxical” result I am highlighting here does not depend on this stark structure or on having just two
types of labor.
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following the rise in the productivity of low-skill workers.

Therefore, I have just proven that, in this general scenario, even a reduced productivity

gap between low-skill and high-skill workers in some tasks could lead to greater inequality.

Hence, the overall inequality implications of AI cannot be directly deduced from its effects

on the performance of workers of different skills in a given set of tasks and requires a fuller

empirical exploration. In the next section, I investigate AI’s inequality effects by adapting

the framework and estimates of Acemoglu and Restrepo (2022) to the current setting.

3 A Preliminary Quantitative Evaluation

In this section, I provide a preliminary quantitative evaluation of the possible effects of

recent breakthroughs in AI over a horizon of 10 years. The centerpiece will be the use

of Hulten’s theorem and recent estimates of which tasks can be automated using AI and

computer vision technologies and the cost savings thereof. Once I obtain these estimates

from Hulten’s theorem for TFP growth, I convert them to GDP growth estimates using

another series of assumptions on how the capital stock of the economy will respond. I also

discuss AI’s effects through new bad tasks could be estimated. Finally, I combine these

numbers with the more detailed framework in Acemoglu and Restrepo (2022) to obtain

even more speculative estimates for wage and inequality implications. Before moving to the

estimates, I first describe the sources I use, further discuss existing productivity estimates

and motivate various parameter choices.

3.1 Data Sources and Parameter Choices

The centerpiece of the estimates in this paper is equation (14), and its refinement to (15).

To implement this equation, two pieces of information are needed:

1. GDP share of tasks that are impacted by AI (inclusive of computer vision) within the

next 10 years.

2. Average cost savings in these tasks due to AI, π̄.

It is impossible to have accurate estimates of either of these two quantities, and hence

my repeated caution that the numbers here—and for that matter, other estimates in the

literature and the public debate—should be interpreted with great caution as suggestive

numbers. Nevertheless, there are studies that have already shed light on these quantities. I

now discuss what these are and how I use them.
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GDP Share of Tasks Impacted by AI

The most careful estimates of which tasks are exposed to recent AI and computer vision

advances come from Eloundou et al. (2023). These authors use two related methodologies

for classifying which tasks are exposed to AI and computer vision. Both of those start from

O*NET task and Detailed Work Activity (DWA) descriptions. The authors ask GPT-4 to

classify all 19,265 tasks and 2,087 DWAs. They also develop a coarser index by manually

classifying DWAs and then cross-validating their GPT-based measure with this “human”

coding. Here, I focus on the GPT-based measure which allows greater granularity, as I

explain next. In addition, Eloundou et al. (2023) distinguish between a direct exposure

(α) measure, which is based on their assessment of what large language models (LLMs)

can achieve now. They then develop a second, more aggressive measure (their so-called β

measure), allowing “indirect” exposure to a hypothetical LLM+. This includes tasks that

will be (possibly) exposed to new software and other advances building on current LLM and

computer vision technologies.20

The index Eloundou et al. report in the paper is based on a binary coding, while they

also construct an “automation” index, and in this case their β measure includes granular

information about what fraction of the activities might be impacted by LLM+ (ranging

across 0%, 25%, 50%, 75% and 100%). In what follows, I take their automation index to be

able to use this granular information. This index still contains both automation and task

complementarities, even if it emphasizes automation a little more than their other exposure

indices (because they code the granular information on the basis of information about what

activities can be automated). In particular, as the authors themselves note, the impact

of generative AI may often involve automation of some subtasks, allowing human workers

to focus on other activities. The granular information contained in this index is especially

useful for my purposes, because it provides an assessment of which tasks/occupations are

less likely to be impacted by AI. I set all tasks that the authors classify as having 50% or

less of their activities impacted by AI and computer vision to zero, and I refer to the rest as

“AI exposed tasks”.

There are several problems that need to be tackled to turn these estimates into the

quantities I need.

� Although Eloundou et al.’s automation index emphasizes automation, it still includes

20They also report a third, even more aggressive measure, which they refer to as ζ. This measure is
more speculative and focuses on what can be ultimately performed by LLM+. In line with the authors’
interpretation, this is unlikely to be the case in the near future, and I ignore this third measure.
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elements of “augmentation” or task complementarity. This motivates my interpretation

that combining their measure with equation (14) will capture cost savings from both

automation and task complementarities.

� Eloundou et al.’s data need to be converted into GDP shares. To do this, I com-

bine tasks into occupations, and then I aggregate across occupations using their wage

bills, computed from the US Bureau of Labor Statistics (BLS) National Occupational

Employment and Wage Estimates pooled across the years 2019-2022. This procedure

yields a wage bill-weighted share of exposed occupations equal to 20%. I interpret this

number to be the same as the GDP share of tasks exposed to AI.

� Eloundou et al.’s approach is to determine tasks that can be ultimately performed

by generative AI and computer vision technologies (such as the technology already

incorporated in Dall-E). Two things are missing from the information they provide.

The first is how much of the task impact is likely to be realized within the next 10 years.

The second is whether, in all of these cases, it is profitable to use AI (e.g., whether

automating using AI is cost-effective). Svanberg et al. (2024) make an attempt to

provide answers to these questions in the case of computer vision technologies, which

are a subset of the technologies Eloundou et al. consider. I take Svanberg et al.’s

estimates and extrapolate them to all of the tasks Eloundou et al. consider.21 Namely,

Svanberg et al.’s base estimates imply that among computer vision-exposed tasks, 23%

can be feasibly (and profitably) automated within 10 years.22 Applying this number to

Eloundou et al.’s estimates, I arrive at the GDP share of tasks impacted by AI within

the next 10 years as 0.23× 0.200 = 4.6% of all tasks (or occupations).

Cost Savings from AI

I base my estimate of π̄ on the experimental studies that have already provided “proof-of-

concept” estimates of productivity improvements or labor cost reductions due to AI. Three

21This is not an innocuous step. Svanberg et al. focus on automation using computer vision, while Eloun-
dou et al.’s exposed technologies include task complementarities as noted above and go beyond computer
vision tasks. One could imagine that the share of tasks that can be profitably used with AI within 10 years
is different between these two categories. Unfortunately, I do not have another source for such an estimate
for non-computer vision AI.

22Svanberg et al. also make further extrapolations assuming cost declines in computer vision technologies.
They base these on estimates from Besiroglu and Hobbhahn (2022), who project a 22% yearly decrease in
computation costs attributed to the expansion of compute power from GPUs. However, a doubling of GPU
capacity will not necessarily translate into a 50% decline in costs in general due to diminishing returns and
bottlenecks created by other inputs, and because of the limitation of the current architecture. I therefore do
not include these in the baseline but return to them in the robustness discussion.
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studies, which I have already mentioned, are particularly notable here, and I now describe

each one of them.

� Peng et al. (2023) design an experiment where freelance computer programmers are

given access to and encouraged to use GitHub Copilot, which (at the time of the

experiment) was powered by OpenAI Codex (GPT-3). Participants were given the

task of implementing a HTTP server on JavaScript, a popular language for which

resources and subroutines are readily available, and GPT-3 was already trained on these

resources. They compare the experimental treatment group to a control group that is

not given access to GitHub Copilot. They find that the treatment group performed

the assigned tasks on average 55.8% faster than the control group. As an aside, like

the other studies I mention here, Peng et al. find that these improvements come from

otherwise less well-performing subjects.

� Noy and Zhang (2023) design an online experiment where individuals in a range of

white-collar occupations are recruited and presented with simple writing tasks (in

particular, tasks like writing press releases, short reports and analyses that are designed

to take 20 to 30 minutes and resemble real life tasks in the participants’ occupations).

The treatment group is given access to and encouraged to use ChatGPT-3.5, while the

control group is not. They verify that there is very low usage of ChatGPT in the control

group. They estimate that ChatGPT enables, on average, 40% faster completion of

the task at hand. They also estimate an 18% improvement in quality scores, as judged

by peers and ChatGPT-based scoring of the output. In their case, too, the gains come

mostly from subjects that performed less well before the experiment.

� Brynjolfsson et al. (2023) is the only study that I am aware of that looks at the use of

generative AI tools in a real business setting with a careful experimental design. The

business they focus on is a customer service provider, which uses a custom generative

AI tool to help customer service associates. The rollout took the form of a treatment

group getting access to this tool, while the control group did not. Brynjolfsson, Li

and Raymond evaluate the impact of the rollout on cost savings, by focusing on how

quickly tasks (open customer tickets) are resolved. They also look at self-reported

customer satisfaction. They find a significant improvement in the speed with which

tasks are completed by customer service associates—an effect of about 14% on average.

However, they additionally estimate a slight and statistically insignificant decline in
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quality, as judged by the users themselves. Like the other studies, Brynjolfsson, Li and

Raymond find that the results are predominantly among the lower-performing, less

expert employees. In fact, they estimate that the top quintile of associates experience

no improvement at all.

I interpret all three studies as providing labor cost savings from AI, broadly construed—in

particular, meaning that all three studies include both automation and task complementarity

elements. For instance, for the GitHub Copilot users in Peng et al., the authors’ interpreta-

tion is that some of the subtasks previously performed by programmers, such as the writing

of common routines, are now done by the Copilot. Along the lines of the discussion in

Section 2.2, suppose that programming in JavaScript involves N subtasks, which need to

be completed for a successful program. These include initial planning (which approach to

adopt, how to organize the program, etc.), composition of subroutines, putting the subrou-

tines together, debugging the subroutines, debugging the master program and then assessing

whether the program achieves the planned aims. When all of these subtasks are performed,

then the task at hand—the writing of a specific computer program—is completed. We can

think of generative AI as taking over a subset of the composition of subroutine tasks. Then

in line with the framework in Acemoglu and Restrepo (2018, 2019b), the use of this new

technology will create displacement and productivity effects. Overall performance will in-

crease because of productivity effects, provided that this technology is better than/faster

than humans at composing some subroutines (but humans are still needed for the other sub-

tasks, including planning, debugging and checking). Demand for human labor in this task

may increase or decrease depending on the magnitude of the displacement and productivity

effects and the elasticity of substitution between this task and other tasks (as well as the

demand elasticity for the product that is ultimately being produced for the market). In

addition, when simple subroutines are taken over by the Copilot, this may enable human

workers to specialize in other subtasks, potentially generating task complementarities and

further productivity gains.23

What I have just described for programming also applies to the other two studies. Chat-

GPT is doing some of the drafting, which human subjects can then take and incorporate into

23However, in this experimental setting, we do not see the displacement effects, because each of the
treatment subjects are given the task and there is no possibility of reducing the number of workers performing
this task. Hence, from these experiments, we can only learn about the productivity gains, inclusive of
any task complementarities—and not about the displacement effects. This interpretation clarifies why I
am comfortable bundling automation and task complementarities together for the purposes of estimating
productivity gains from AI.
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their writing with some verification and modification. The same applies for the customer

service associates, who are allowed to copy and paste text suggested by the generative AI

tool in the setting studied by Brynjolfsson, Li and Raymond.

I also assess that the tasks in these three studies are broadly comparable to the exposed

tasks considered in Eloundou et al. (2023), even though I argue later that they are more

likely to be in the easy-to-learn category. Hence, these studies are most informative about

cost savings (productivity improvements) for the exposed tasks in Eloundou et al.

As a baseline, I ignore the quality effects (which, as noted, are not uniform between

the three studies) and focus on the average increase in speed and interpret this as average

cost savings. I return to the inequality implications below. Finally, as a baseline, I use the

average of the estimates from Noy and Zhang (2023) and Brynjolfsson et al. (2023), and turn

to the average of the three studies as a robustness check. The reason for this is that Peng

et al.’s setting is less likely to be relevant to other tasks and occupations, since the task in

question is a very well-defined one for which Github Copilot was extensively trained, and

this has no direct equivalent in the other tasks we are focusing on. Under these assumptions,

the average labor cost savings are 27% (= 0.27).

Recall that these numbers refer to declines in labor costs in occupations, where many

tasks involve use both capital and labor, and what is relevant in equation (14) is overall

cost savings. To convert labor cost savings into overall cost savings, I use the industry-level

estimates from Eloundou et al. and combine them with industry labor shares from the

Bureau of Economic Analysis (BEA), as described in the Appendix.24 This gives an average

(AI exposure-adjusted) labor share of 0.535, and thus the average (overall) cost savings from

AI are about 0.27× 0.535 = 0.144.

If we add the numbers from Peng et al. to the mix, the average labor cost savings become

0.36, and thus the average overall cost savings come to 0.193.

24Briefly, I follow Eloundou et al. and map exposed tasks to occupations, and then map occupations to 14
aggregated NIPA (National Income and Product Accounts) industries using the fractions of workers in each
occupation employed across industries. I then compute the labor share of exposed tasks using industry labor
shares weighted by the value-added shares of these industries in gross national income. In these calculations,
the self-employed are assumed to have the same hourly wage rate as employees in the same industry. I
use the 14 NIPA industries to be able to have information on hours worked. These data are for the years
2018-2022 from the US BEA NIPA tables, and I provide a list of these 14 industries in the Appendix.
For reference, the average (value-added-weighted) labor share in 2018-2022, without the exposure adjust-

ment, is 0.576. This suggests that exposed tasks are, on average, in industries with slightly lower labor shares
than the national average. This labor share estimate is similar to the one reported in Elsby et al. (2013),
0.583, for private non-farm business sector for the years 2010-2012 using the same approach as here. Elsby
et al. (2013) also report similar numbers under alternative methodologies for incorporating self-employment
income.
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3.2 Aggregate Productivity Gains: A First Pass

A first-pass estimate of productivity (TFP) gains at the aggregate level can be obtained

simply by combining the numbers derived in the previous subsection with equation (14).

This implies:

TFP gains over 10 years = GDP share impacted by AI over the next 10 years

× average cost savings of impact tasks.

Therefore, on the basis of the numbers from the previous subsection, I can approximate:

TFP gains over the next 10 years = 0.046× 0.144

≃ 0.0066.

In other words, according to this basic estimation strategy, TFP gains over the next 10 years

from AI are about 0.66%—meaning that relative to the baseline without the current suite of

AI and computer vision advances, TFP will be higher by 0.66 percentage points in 10 years,

or annual TFP growth will be higher by around 0.064%. This is a nontrivial, but modest

effect, and certainly much less than both the revolutionary changes some are predicting and

the less hyperbolic but still substantial improvements forecast by Goldman Sachs and the

McKinsey Global Institute, which I discussed in the Introduction.

If we were to consider the higher productivity numbers from Peng et al., 0.144 would be

replaced by 0.193, and the 10-year TFP gains would be 0.89%, instead of 0.66%.

The only modification that would make a sizable difference to these numbers is to increase

the fraction of tasks that will be impacted over the next 10 years. One way of doing this

is to inflate the numbers from Svanberg et al.. This could be because either the fraction of

tasks that can be feasibly automated will be different for generative AI than for computer

vision, or because within 10 years this fraction will increase significantly. For example, in

Svanberg et al.’s scenarios where costs for computer vision decline very rapidly, such as 10%

a year, the fraction of tasks that are feasibly automated may be as high as 30%. This would

raise the GDP share impacted by AI to approximately 6%, and correspondingly increase

the TFP gains over the next 10 years to about 0.9%. Note that even this number is quite

modest, and moreover, 10% per annum cost declines is quite aggressive (since, as already

noted above, even if GPU costs were to decrease by 10% or even 20%, this would not lead

to a 10% decline in costs of performing computer vision tasks, given the presence of other

inputs, such as programming and data, as well as the inherent limitations of the current

generative AI architecture).
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Finally, I note three important considerations missing from these computations.

1. These adoption numbers ignore the fact that there is still very little investment in AI

in the US corporate sector. Acemoglu et al. (2022) estimate that less than 1.5% of

US businesses had any investment in AI in 2019, and this is particularly true beyond

the very large companies in manufacturing, information services and business services.

Since many of the tasks considered in Eloundou et al. (2023) are performed in small

and medium-sized enterprises, this is unlikely to change quickly. If generative AI

tools become monopolized in the hands of a few companies, this might further slow

down their adoption by small and medium-sized firms. These considerations suggest

that even the 0.046% number for the share of GDP impacted by AI may be a big

overestimate, and the true numbers could be much smaller.

2. Any major technology creates adjustment costs when adopted at large scale, because

other organizational aspects need to evolve as well and this is typically quite costly

and slow. In the context of digital technologies, Greenwood and Yorukoglu (1997) and

Brynjolfsson et al. (2021), among others, have argued that productivity gains will take

a J-shaped pattern, and the former paper predicts that the flat part of the J-curve lasts

no less than 20 years for digital technologies. If so, the 14.4% overall cost reductions

may be a significant overestimate for the next 10 years.

3. As already discussed above, some of the tasks in the list of Eloundou et al. (2023) are

hard-to-learn, where productivity gains may be significantly less than those based on

the experimental studies that have focused on the easy-to-learn tasks.

In the next subsection, I make a preliminary attempt at incorporating the third possi-

bility, but I will ignore the first two. Nevertheless, these considerations make me conclude

that even the 0.66% increase in TFP within the next 10 years due to AI is likely to be an

upper bound on this technology’s medium-run effects.

3.3 Aggregate Productivity Gains: Incorporating Hard Tasks

In this subsection, I refine the estimates from the previous subsection by switching to equa-

tion (15), which can be rewritten as:

TFP gains = GDP share of impacted easy tasks × average cost savings from easy tasks

+GDP share of impacted hard tasks × average cost savings from hard tasks.
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I take the 27% labor cost savings, from Noy and Zhang (2023) and Brynjolfsson et al.

(2023), to apply to easy-to-learn tasks. The discussion in the previous section suggests that

most hard tasks have not been impacted or automated yet, and hence it is impossible to

know what their cost savings will be. Here I take those productivity gains to be 7%. My

reasoning is as follows. I consider the tasks involved in the Peng et al. (2023) study to be

very easy-to-learn for generative AI for reasons explained above. Those studied in Noy and

Zhang (2023) are also on the easy side, and led to cost savings of about 40%, which is about

two thirds of the cost savings in Peng et al., while the customer service tasks in Brynjolfsson

et al. (2023) are already moving towards somewhat more complex tasks, and these had cost

savings of only 14%. I imagine that many of the hard-to-learn tasks are more challenging for

AI models than the simpler end of the customer service tasks to which Brynjolfsson et al.’s

numbers refer. This motivates my choice of half of the cost savings of their study, 7% (which

is also about a quarter of the baseline 27% cost reduction estimate I used in the previous

subsection).

The cost-saving numbers for both easy and hard tasks are again multiplied with 0.535

to convert them into overall cost savings—0.144 and 0.037 for easy and hard tasks, respec-

tively. To obtain the shares of easy and hard tasks, I start from Eloundou et al.’s data and

methodology, and then develop a procedure, implemented using GPT-4 like they do, for

sorting these into easy and hard tasks. The key characteristic for easy tasks is the presence

of a well-observed outcome and a straightforward rule that links actions/recommendations

to characteristics of the problem at hand.

To implement this procedure, I start from the 4089 exposed tasks determined from the

above procedure. Each one of these tasks has a statement on O*NET that includes at least

one verb. Each task also belongs to the higher level of aggregation of Detailed Work Activites

(DWAs) and the (even coarser) 332 Intermediate Work Activities (IWAs). The procedure

proceeds in four steps:

1. Classification of verbs: Each task statement includes at least one verb which is

located at the beginning and can be easily identified. These primary verbs describe

much of what is “hard” or “easy” that needs to be learned about the task. We classified

tasks manually into easy and hard categories.25 The full list of tasks is provided in the

Appendix. As an illustration, verbs for easy tasks include, among others: compute,

resolve, count, draft, grade, transcribe, classify, standardize, write, and record. Many

25This step and other manual coding steps in this subsection were carried out by Can Yeşildere.
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of these verbs are associated with simple actions that follow a clear set of steps and also

implicitly have a well-defined metric for success (such as accounting or grading). In

contrast, verbs for hard tasks include: participate, advise, instruct, diagnose, educate,

hire, represent, testify, and care. The latter set of verbs describes more open-ended

activities for which there is less likely to be a clear metric of success. Yet other verbs,

such as analyze, maintain or inspect, do not fall into either of these categories, and are

coded as “uncertain”.

2. Classification of IWAs: IWAs provide additional context for verbs, especially for

actions that verbs alone lack. We manually classify the 332 IWAs into easy and hard

tasks. Some of the easy IWAs are: Evaluate project feasibility; Maintain sales or

financial records; Explain regulations, policies, or procedures; Issue documentation;

and Teach safety procedures or standards to others. Some of the hard ones include:

Monitor health conditions of humans or animals; Evaluate scholarly work; Evaluate

the quality or accuracy of data; Maintain safety or security; and Train animals. These

examples highlight the same principle mentioned in the discussion of verbs—easy-

to-learn activities are those for which there is a clear metric of success and simple

rules that can achieve this successful outcome, while these are absent in hard-to-learn

activities.26

3. Latent Dirichlet Allocation (LDA) topic modeling: While tasks may share

IWAs and verbs, each task is also worded uniquely to capture the subject and the

more detailed description of activities. While “writing an audit report” and “writing a

letter of recommendation” are both associated with the same verb and the same IWA,

the content and skills required for these tasks are different. To better disambiguate the

contexts of these tasks, we use the LDA to allocate tasks into clusters. LDA procedure

is unsupervised and clusters tasks using the co-occurence matrices of words extracted

from each task statement. It assigns a probability to each task belonging to a topic

cluster (Blei et al., 2003). We feed all 19, 281 tasks into the algorithm and use LDA

to identify 100 clusters and the probability that each task belongs to one of those 100

clusters.

4. Final assignment: The final step of our procedure is to derive a probability that

26Of course, there is considerable ambiguity in some cases. For example, “Maintain safety and security”
also includes IT security activities, such as making sure that a new password can be issued to an authorized
person, and this would be an easy-to-learn task. The third step is aimed at dealing with such ambiguities.
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each exposed task is easy or hard. We first manually classify a random sample of 500

exposed tasks as easy or hard. We then use the classification of verbs, classification of

IWAs, and the LDA-derived probabilities to train a gradient-boosted tree (Friedman,

2001) to match the manual classifications of the training sample of tasks. We finally

obtain a probabilistic assignment of each one of the 4089 exposed tasks into easy or

hard task category from this algorithm.27

The end result is that 72.6% of wage bill-weighted exposed tasks in Eloundou et al.

are easy. This means that easy exposed tasks comprise 3.3% of GDP, while the remaining

exposed tasks (making up 1.3% of GDP) are hard. Incorporating this information together

with the assumptions on cost savings yields the following tighter upper bound on TFP gains

in the next 10 years:

TFP gains over the next 10 years = 0.033× 0.144 + (0.046− 0.033)× 0.037

≃ 0.0053.

Unsurprisingly, this is smaller than the estimate in the previous subsection. Since automating

hard-to-learn tasks—and even more so, introducing task complementarities for them—will

be more challenging, I view this estimate to be more reasonable. Either way, the TFP gains

within the next 10 years appear quite modest.

3.4 From TFP to GDP

Given the TFP effects of AI over the 10 year horizon, the total GDP effects of AI over the

same horizon can be computed from equation (13). Namely, this equation can be written as:

GDP gains over the next 10 years = TFP gains over the next 10 years

+ capital share × proportional increase in capital stock.

As a simple benchmark, I start by assuming that the capital stock will grow proportion-

ately with TFP, which implies:

GDP gains over the next 10 years = TFP gains over the next 10 years /(1− capital share).

27As examples, the algorithm assigns a probability of 0.98 that “Maintaining equipment service records”
is an easy task, while only a probability of 0.098 that “Interviewing credit card applicants by telephone or
in person” is an easy task. Because writing and drafting are classified as verbs associated with easy tasks,
activities that involve writing are classified generally as easy. Some of this may understate the difficulty
of some writing-related tasks. For example, “Writing reports or academic papers to communicate findings
of climate-related studies” is classified to be an easy task with probability 0.67, which is likely to be an
underestimate of how hard such a task will continue to be for AI in the foreseeable future.
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Using the capital share for the entire private business sector, 0.43, this implies that GDP

gains will be equal to the TFP gains multiplied by 1.75 (≃ 1/(1− 0.43)). Hence taking the

baseline estimate of an increase in TFP of 0.66%, I obtain a first estimate for GDP growth

due to AI of 1.16% over 10 years, or taking the presence of hard tasks into account, a lower

estimate of 0.93%.

I update the GDP effects of AI advances in Section 3.6 when I model the between-task

and between-industry substitution patterns and the resulting investment response.

3.5 Consequences of New Bad Tasks

The calculations so far leave out the effects of new tasks introduced thanks to AI (and equiv-

alently, the system-wide adjustments that AI may enable in some businesses, as emphasized

by Bresnahan (2019) and Agrawal et al. (2023). It is even more challenging to put numbers

on the effects of new tasks. If AI helps create new tasks that increase productivity and espe-

cially contributes to the reinstatement of workers of different skill levels into the production

process, its consequences can be much more positive.

Here my purpose is simply to point out that in the case of AI, because some of the new

tasks may be of the “bad” type, there may be an overstatement of the welfare gains from

AI when we look at GDP numbers. As an extremely preliminary attempt to argue that this

could be important, I will draw on two sources of data.

The first is the recent study by Bursztyn et al. (2023), which provides suggestive esti-

mates for the extent of this problem in the case of social media. Bursztyn et al. (2023) run

an experiment to evaluate the welfare effects of social media for college students, the demo-

graphic group most engaged with social media. They ask TikTok and Instagram users how

much they would need to be paid to not use the platform for a month. Users of these two

platforms are willing to pay up to $59 and $47 a month, respectively, to continue to use social

media—or on average $53 per user-month. However, they find that users are also willing

to pay $28 and $10 every month to get everyone from their social network off TikTok and

Instagram, respectively—or an average $19 per user-month. If non-users are also included in

the analysis, the willingness to pay to stop everybody using social media increases to $47 for

TikTok and $13 for Instagram. This suggests that while companies can profitably market

AI-based social media, the net effect on welfare may be negative. Quantitatively, I ignore

the non-users (since the population in the study is college students, who are more likely to be

impacted by social media activity even when they do not use it than the adult population in
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the United States). I also start with a benchmark in which AI-powered platforms can capture

the full (average) $53 willingness to pay per user (for example, because they are effectively

price discriminating by varying the intensity with which they are collecting and monetizing

users’ data). Then taking the average between the two platforms, I conclude that for every

$53 of revenue, there is a net negative effect on users of $19. Put differently, the total effect

from this class of new bad tasks, the equivalent of (18) in theory, is −19/53 ≃ −0.36 in

proportionate terms. Note also that if I assumed instead that social media companies can

capture less than the full $53 per user-month, then the denominator in this expression would

be smaller, and thus the proportionate damage per dollar of revenue would be higher.

I combine the number −0.36 with estimates of (i) revenues from social media and digital

ads, and (ii) spending on malicious IT attacks and IT security against these attacks to

compute apparent and real gains from new bad tasks. Specifically, the total revenues in 2022

of Meta (Facebook plus Instagram), Alphabet (Google and Youtube), Snapchat, TikTok and

Twitter (“X”) comes to 460 billion, or about 1.64% of US GDP,28 while a lower bound on IT

security is 78 billion or 0.28% of US GDP.29 Assuming that spending by malicious actors on

IT attacks is at least one third of this and combining these three estimates, I arrive to 2% of

US GDP. This number could be a significant underestimate of other manipulative activities

enabled by new AI technologies. On the other hand, it could also overstate the problem, since

only a fraction of digital ad revenues will come from such manipulative activities (and this

may be particularly true for digital ad revenues from Google search). These considerations

suggest that the numbers here should be taken as merely suggestive.

Taking the 2% of US GDP as revenues from new bad tasks and using the numbers from

Bursztyn et al. (2023) suggests that the total negative effects of these manipulative activities

is 0.02× 0.36 = 0.072% of GDP (in consumption equivalent units). This number points to a

sizable negative impact on welfare, and could be larger if manipulative uses of generative AI

becomes more widespread. In contrast, if one were to simply count the revenue coming from

these new tasks, one might conclude that they would increase GDP by 2%. This discussion

thus suggests caution in interpreting all increases in GDP coming from the use of generative

AI as a positive effect on consumer welfare.

28The numbers for Meta ($130 billion), Alphabet ($307 billion) and Snapchat ($4.6 billion) are from these
companies’ 2023 10K filings. Fortune reported on December 12, 2023 that X’s annual revenue was $2.5
billion in 2023, while Financial Times reported on March 15, 2024 that revenues from TikTok’s US business
had reached $16 billion per annum (see Fortune and Reuters).

29See Statista.
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3.6 Wage and Inequality Implications

Finally, I evaluate the wage and inequality consequences of generative AI advances. To do

this, the present framework needs to be extended to include multiple demographic groups

that have different comparative advantages across different tasks, as in Acemoglu and Re-

strepo (2022). To save space, I do not introduce this generalization and refer the reader to

that paper. Instead, I start with the following equation from their paper, which is a gener-

alization of (11) above to a setting with multiple sectors and multiple demographic groups

(but, for simplicity, without the task complementary and labor-augmenting changes):

d lnwg = Θg ·
(
1

σ
d ln y +

1

σ
d ln ζ − 1

σ
d lnΓauto

)
.

Here, g refers to demographic group g, and following their paper, I will focus on 500 demo-

graphic groups, defined by education, age group, gender, ethnicity and native vs. foreign-

born status. In addition, d ln y is the change in GDP resulting from the technology change

(capturing the productivity effect), σ is the elasticity of substitution between tasks, and

ζ is the vector of induced industry shifts (e.g., because automation of tasks in one indus-

try affects prices and causes a reallocation of spending across sectors). Most importantly,

d lnΓauto is the vector of demographic group-level displacement caused by the technology

shock—namely, it is a column vector of 500 entries, and Θg is the gth-row vector of the

propagation matrix, which summarizes how the displacement of other demographic groups

affects demographic group g (this is the reason why it is pre-multiplying the vectors of

industry shifts and displacements for all groups).

The propagation matrix represents the full “ripple effects”—the impact of the displace-

ment of one demographic group on others, as they leave the tasks they were previously

performing and compete with other groups to be employed in other tasks. Such reallo-

cations are the key channel via which direct productivity gains for a group may end up

harming it (as my example in the previous section illustrated). They are also the mecha-

nism via which the displacement of a demographic group may end up being more damaging

to another demographic group.

The ripple effects estimated in Acemoglu and Restrepo (2022) may be context-specific—

meaning that the magnitudes of these effects could be quite different for the tasks impacted

by AI and automation technologies that my previous work focuses on. Nevertheless, since it is

impossible to estimate these ripple effects for the future impact of generative AI technologies,

I will use these existing estimates.
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Figure 1: Distribution of AI exposure across the wage distribution
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Notes: This figure depicts the AI exposure measure (both easy and hard tasks, combined) across 500 demographic groups. The

horizontal axis gives the average hourly wage of each demographic group between 2018 and 2022, computed from the American

Community Survey five-year sample. Marker sizes are proportional to the average 2018-2022 employment level of each group

and different colors indicate the education level of the group.

An additional issue is that I have so far interpreted AI exposure to include both automa-

tion and task complementarities. In this subsection, I ignore the task complementarities and

presume that all of the AI exposure quantified so far will take the form of automation.30

The methodology in Acemoglu and Restrepo (2022) starts from the d lnΓauto vector,

which is at the demographics group level. To construct an equivalent of this measure, I take

the set of exposed occupations, and then use the wage bill shares of different demographic

groups in these occupations to map the AI-generated displacement to the demographic group

level. For example, if for demographic group g 5% of the wage bill share in 2019-2022 were

in fully-exposed occupations, then d ln Γg
auto would be 0.05. I also assign these occupations

to industries using wage bill shares in order to compute industry-level impacts on costs and

prices.31 I compute the induced sectoral reallocations in the same way as in Acemoglu and

Restrepo (2022), using their parameterization of inter-sector elasticity of substitution and

30If there were task complementarities, this would increase the productivity of exposed demographic groups
in the remaining subtasks, but would also reduce the automation-driven cost savings by a corresponding
amount. If task complementarities and automation affected different demographic groups within occupations
symmetrically, this would have minor effects on the conclusions: although the wage effects of productivity
gains from task complementarities are a little different than the cost savings generated by automation
(Acemoglu and Restrepo, 2022), the results would remain broadly similar. If, on the other hand, some groups
benefited more from task complementarities (for example, because they are overrepresented among middle-
expertise workers that can benefit most from generative AI tools), the distributional consequences could be
different. Since I do not have a way of distinguishing productivity effects from task complementarities and
automation, I am unable to explore this issue further.

31This exercise uses the 49 BEA industries as in Acemoglu and Restrepo (2022).

37



the estimate of σ = 0.50 as in Humlum (2021) and take the elasticity of substitution between

sectors in consumption to be η = 0.2 as in Buera et al. (2022), which was also imposed in

Acemoglu and Restrepo (2022).

Figure 1 is the equivalent of Figure 5b in Acemoglu and Restrepo (2022) and presents

the distribution of AI exposure across demographic groups sorted by their hourly wage in

2018-22. It shows that AI exposure is much more equally distributed across demographic

groups than pre-AI automation (which was based on robotics, dedicated advanced machinery

and software systems).

Table 1 presents the main results. The seven rows are for the five education groups

(aggregating demographic groups according to their education level), for the average of

the workforce and for GDP. The first column gives the AI exposure for each one of the

demographic groups, using our baseline exposure measure that does not distinguish easy

and hard tasks. The second column presents the direct impact of AI exposure on each one

of these groups, while the third column contains the full wage impact, taking into account

induced substitution between industries and the ripple effects. The next four columns are

similar but now refer to the AI exposure measure that separates easy and hard tasks—column

4 gives exposure to easy tasks and column 5 is for exposure to hard tasks. Finally, column 8

shows the exposure measure from Acemoglu and Restrepo (2022) for comparison (but recall

that this measure refers to a 36-year period, rather than the 10-year timescale here). The

comparison of columns 1 and 4-5 to column 8 confirms that AI exposure is much more equally

distributed across demographic groups than pre-AI automation exposure. Workers with less

than high school have the lowest exposure, followed by postgraduates, while workers with

college degrees and those with associate degrees or some college have the highest exposure.

Consequently, predicted wage impacts do not appear to have a big impact on inequality

between education groups. Focusing on the estimates in column 7, which incorporate easy

and hard tasks, there is a slightly higher wage growth for workers with less than a high school

degree—about 1.3% within 10 years—but the gap between postgraduate versus high school

and college graduate workers also widens somewhat. In fact, the between-group standard

deviation of log wages (weighted by employment) increases slightly, from 0.35 to 0.36. The

results are quite similar in column 3 for the baseline AI exposure measure.
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Figure 2: Decomposition of productivity effects, industry shifts, direct displacement effects
and ripple effects
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Notes: This figure is based on the estimates of the propagation matrix from Acemoglu and Restrepo (2022) and combines this

with the measure of exposure to easy and hard AI tasks in this paper. The first panel includes just the productivity effect. The

second panel adds the industry shifts induced by AI exposure. The third panel incorporates the direct displacement effect, while

the final panel adds the ripple effects. The horizontal axis gives the average hourly wage for the relevant demographic group

between 2018 and 2022, computed from the five-year American Community Survey sample. Marker sizes are proportional to

the average 2018-2022 employment level of each group and different colors indicate the education level of the group. See text

for details.

Finally, row 7 presents the estimate of the impact on GDP, taking into account the

equilibrium increase in the capital stock implied by the model. This is under the assumption

that all of the capital stock adjustment will take place within 10 years (while in practice

it may take longer) and that the required rate of return on capital investments does not

change (whereas with a sizable investment, we may expect an increase). This leads to an

upper bound GDP impact of 1.4% in column 7, when I distinguish between easy and hard

tasks (or 1.56% in column 3 when this distinction is not drawn). GDP therefore increases

substantially more than average wages, and as a result, the capital share of national income

increases by about 0.31 percentage points. This confirms that inequality between capital

and labor is likely to rise as a result of the rollout of AI.32 Figure 2 performs the same

32Recall, however, that it is the TFP gains that are the relevant numbers for consumer welfare, since the
additional investment comes out of consumption and may involve additional heavy energy use, as remarked
in footnote 6.
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Figure 3: Total wage effect of exposure to AI, by gender
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Notes: This figure is based on the estimates of the propagation matrix from Acemoglu and Restrepo (2022) for 1980-2016, and

combines this with the measure of exposure to easy and hard AI tasks in this paper. Each panel includes wage effect estimates

for five education groups. Reported estimates are weighted averages of the estimates for the more detailed subgroups (using

average employment 2018-2022 as weights). The upper left panel is for native-born white men, the lower left is for all other

men, the upper right is for native-born white women and the lower right is for all other women.

exercise as Figure 7 in Acemoglu and Restrepo (2022), focusing on the exposure measure

that distinguishes between easy and hard tasks. As in that paper, productivity effects are

(by construction) uniform across groups, and there is also not much inequality generated

by the cross-industry shifts shown in the second panel. The third panel confirms that AI’s

direct effects are more equally distributed across demographic groups and throughout the

wage distribution. In contrast to the findings in Acemoglu and Restrepo (2022), ripple effects

do not change the inequality patterns by much, largely because the direct effects are already

fairly equally distributed. Figure 2 also indicates that there is a lot of variability in the

experience of low-education groups—and this is the reason why the between-group standard

deviation of log wages increases, as noted above. Figure ?? explores this issue further by

depicting the real wage changes of finer groupings, distinguished by gender, by education

and by white and native-born status versus the rest. It reveals that low-education women,

especially white, native-born low-education women, are likely to experience declines in real
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wages as a result of AI.

Overall, this exercise suggests that the inequality consequences of AI will not be as

adverse as pre-AI automation, because AI exposure is more equally distributed across de-

mographic groups. Nevertheless, there is no evidence that AI will reduce inequality, as some

are forecasting. Rather, my analysis suggests that it may have a small positive effect on

overall (between-group) inequality and reduce the real earnings of low-education women. It

will also further widen the gap between capital and labor income.

4 Concluding Remarks and Discussion

Following its release on November 30, 2022, ChatGPT became the fastest spreading tech plat-

form in history, reaching approximately 100 million monthly users within just two months.

Its impressive features, and the greater capabilities of the newer version ChatGPT-4, released

in March 2023, soon captured imaginations, both among the general public and economic

commentators. Forecasts of large productivity gains have now become commonplace.

While there is no question that generative AI models, including ChatGPT, have impres-

sive achievements and have great potential for beneficial economic effects, the extent of their

macroeconomic consequences remains an open question.

There are four potential types of macro effects that AI technologies can have in the

medium run:

1. They can quickly revolutionize every aspect of the economy, and lead to massive im-

provements in productivity, even taking us close to “singularity”. While this is a

possibility that cannot be completely ruled out, there is so far no evidence of such

revolutionary effects (Nordhaus, 2021), and these are not addressed in the current

paper.

2. They can have more modest but still notable effects on the macroeconomy by improving

productivity and reducing costs in a range of tasks. Some of the forecasts have focused

on these types of improvements and still produced relatively large numbers, such as a

1.5 − 3.4 percentage point per annum increase in economic growth within a 10 year

horizon.

3. They can impact wages and inequality because of their automation effects, or con-

versely, lead to large wage increases, especially for lower-pay workers, as forecast by

The Economist (2023).
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4. They can have macroeconomic effects by producing deepfakes, misinformation, manip-

ulation and other “bads”.

In this paper, I use the task-based framework of Acemoglu and Restrepo (2018, 2019b,

2022) to evaluate the second and the third effects, and I also take some steps to formalize

how the fourth set of effects might work out in a task-based macro framework.

I base my approach on existing experimental studies that estimate productivity gains and

time savings from the use of generative AI tools in a number of settings. By building on these

studies, I am explicitly taking on board the idea that generative AI will lead to productivity

improvements. Nevertheless, combining these numbers with estimates of exposed tasks from

Eloundou et al. (2023) and Svanberg et al. (2024) leads to much more modest productivity

effects than most commentators and economists have claimed so far. These numbers become

even smaller once we take into account that many of the tasks for which we have evidence of

cost savings are relatively easy for AI, while in several other tasks the integration of AI will

face more formidable difficulties—mostly because these are likely to involve more complex

interactions between action and context and because they lack clear metrics for success that

are observable, and hence necessitate AI models to learn from the (average) behavior of

humans previously performing the same tasks.

Taking these considerations into account, I estimate that TFP effects from AI advances

within the next 10 years will be modest—an upper bound that does not take into account

the distinction between hard and easy tasks would be about a 0.66% increase in total within

10 years, or about a 0.064% increase in annual TFP growth. When the presence of hard

tasks among those that will be exposed to AI is recognized, this upper bound drops to

about 0.53%. GDP effects will be somewhat larger than this because automation and task

complementarities will also lead to greater investment. But my calculations suggest that the

GDP boost within the next 10 years should also be modest, in the range of 0.93%− 1.16%

over 10 years in total, provided that the investment increase resulting from AI is modest,

and in the range of 1.4%− 1.56% in total, if there is a large investment boom.

If AI is used to create new tasks and products, these will also add to GDP and can

boost productivity growth. Nevertheless, when we incorporate the possibility that new

tasks generated by AI may be manipulative, the impact on welfare can be even smaller.

Based on numbers from Bursztyn et al. (2023), which pertain to the negative effects of AI-

powered social media, I provide an illustrative calculation for social media, digital ads and

IT defense-attack spending. These could add to GDP by as much as 2%, but if we apply
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the numbers from Bursztyn et al. (2023), their impact on welfare may be −0.72%. This

discussion suggests that it is important to consider the potential negative implications of

AI-generated new tasks and products on welfare.

Finally, I borrow heavily from the estimates of Acemoglu and Restrepo (2022) on the

economy-wide productivity, wage and inequality effects of pre-AI automation technologies

to provide some guidance on what the impact of new AI advances will be. Because AI-

exposed tasks are more equally distributed within the population than tasks exposed to

pre-AI automation, I do not find substantial negative wage effects for any education group.

Nevertheless, the estimates do not point to significant reductions in inequality either, and

in fact, my findings suggest that low-education women may experience small wage declines,

overall between-group inequality may increase slightly, and the gap between capital and

labor income is likely to widen further.

These results should not be interpreted as arguing that there are no major benefits from

AI. First, an increase of about 0.53 − 0.66% in TFP within 10 years is modest but still far

from trivial. Second and more importantly, there may be other ways in which AI can be used

to generate much more notable benefits. I have suggested in previous work (Acemoglu, 2021,

Acemoglu and Restrepo, 2020b) that if AI is used for generating new tasks for workers, it can

have more beneficial productivity, wage and inequality consequences, and it can even increase

wages. This may be doubly true for generative AI, which could be used for providing better

information to workers and boosting their expertise, as argued in Acemoglu et al. (2023)

and explained briefly here.

Many production workers today, including electricians, repair workers, plumbers, nurses,

educators, clerical workers, and increasingly many blue-collar workers in factories, are en-

gaged in problem-solving tasks. These tasks require real-time, context-dependent and reli-

able information. For instance, an electrician dealing with the malfunctioning of advanced

equipment or a short-circuit on the electricity grid will be hampered from solving these prob-

lems because he or she does not have sufficient expertise and the appropriate information

for troubleshooting. Reliable information that can be provided quickly by generative AI

tools can lead to significant improvements in productivity. Similarly, generative AI in class-

rooms can lead to a major reorganization of how teaching takes place, with greater levels

of personalization, as these tools help teachers identify specific aspects of the curriculum

with which subgroups of students are having problems and propose new context-dependent

teaching strategies. Reliability of AI models will be key for successfully creating such new
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tasks and delivering improvements in the quality of education.

Productivity improvements from new tasks and new products, which have been impor-

tant for previous transformative technologies, such as electricity and the Internet, are not

incorporated into my estimates. This is for three reasons. First and most parochially, this is

much harder to measure and is not included in the types of exposure considered in Eloundou

et al. (2023) and Svanberg et al. (2024). Second, and more importantly, I believe it is right

not to include these in the likely macroeconomic effects, because these are not the areas

receiving attention from the industry at the moment, as also argued in Acemoglu (2021),

Acemoglu and Restrepo (2020b) and Acemoglu and Johnson (2023). Rather, areas of pri-

ority for the tech industry appear to be around automation and monetization of personal

data, such as through search or social media digital ads. This makes it less likely that many

new good tasks will be created quickly.Third, and relatedly, more beneficial outcomes may

require new institutions, policies and regulations, as also suggested in Acemoglu and Johnson

(2023) and Acemoglu et al. (2023).

My assessment is that there are indeed much bigger gains to be had from generative AI,

which is a promising technology, but these gains will remain elusive unless there is a funda-

mental reorientation of the industry, including perhaps a major change in the architecture

of the most common generative AI models, such as the LLMs, in order to focus on reliable

information that can increase the marginal productivity of different kinds of workers, rather

than prioritizing the development of general human-like conversational tools. The general-

purpose nature of the current approach to generative AI could be ill-suited for providing

such reliable information. To put it simply, it remains an open question whether we need

foundation models (or the current kind of LLMs) that can engage in human-like conver-

sations and write Shakespearean sonnets if what we want is reliable information useful for

educators, healthcare professionals, electricians, plumbers and other craft workers.
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Online Appendix

A-1 Exposed Share of Tasks

Eloundou et al. (2023) present task-level exposures estimates based on O*NET, which lists

tasks by occupation at the level of the eight-digit Standard Occupational Classification

(SOC). We link thess data to the BLS Occupational Employment and Wage Statistics

(OEWS) for 2019 to 2022 to calculate the wage bill-weighted share of exposed tasks in

the economy. BLS OEWS data are reported at the six-digit SOC level, and we combine

these two sources of data as follows:

1. Six-digit direct matching: We compute occupational exposures scores at the eight-

digit SOC level based on Eloundou et al. (2023). We then aggregate these eight-digit

numbers to the six-digit SOC level (with equal weights). This direct match covers

90.8% of the total wage bill in the economy.

2. Aggregation to five-digit: In this step, we aggregate the six-digit SOC occupations

to five-digits. For five-digit occupations that include both six-digit occupations with

exposure estimates and wage bill information in BLS OEWS, we compute the wage

bill share-weighted average of the six-digit occupations. This weighting scheme ensures

that the information at the six-digit level is preserved when we aggregate up to five-

digits. BLS OEWS does not report wage bill information for some small occupations,

and as a result, for some five-digit occupations we have no direct match to six-digit

occupations with exposure and wage bill data. In such cases, we compute the five-digit

exposure by taking the unweighted average of all corresponding six-digit occupations

with exposure data. These steps together cover 99.3% of the total wage bill in the

economy. The remaining five-digit occupations, which make up 0.7% of the wage bill

and have no exposure information in Eloundou et al. (2023), are assumed to have zero

exposure. This aggregated occupational exposure score is denoted by Γ0.

A-2 Industry Labor Share and Exposure-Adjusted La-

bor Share

Industry-level exposure to AI, Γi, is computed following the strategy used by Eloundou et al.

(2023), leveraging industry-level occupation distributions and occupational exposure data.
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Specifically:

Γi =

∑
o∈O noiΓ0∑
o∈O noi

,

where Γo is occupation o’s exposure to AI and noi are the number of people employed in

occupation o in industry i, drawn from the BLS OEWS.

The labor share in non-farm private business income is computed in the usual manner

as:

sL =
Σi∈Is

i
Y s

i
L

Σi∈IsiY
,

where siY is the share of industry i’s value added in non-farm private sector GDP, and siL is

industry i’s labor share of value added. I follow the BLS and Elsby et al. (2013), and impute

self-employment income in line with average hourly wage of employees in the same industry

according to the number of hours worked of the self-employed. Since the number of hours

worked is available only at the level of 14 aggregate NIPA industries, provided in BEA, I use

these 14 industries for this exercise.33 The labor share for 2018-2022 is estimated as 0.576.

This number is similar to the estimates provided in Elsby et al. (2013) for the years 2010-

2012, when they use the same methodology for imputing self-employment income. They also

report a slightly higher labor share of 0.593, leveraging an alternative methodology based on

the idea that the implied rate of return to capital used with employees has to be the same

as the rate of return to capital used in self employment.

Exposure-adjusted labor share income, ŝL, is then calculated as:

ŝL =
Σi∈IΓis

i
Y s

i
L

Σi∈IΓisiY
.

The only difference from the labor share computer previously, sL, is the adjustment by the

level of industry exposure, Γi. This leads to a slightly lower number than sL, 0.536.

33Specifically, we averaged data for the years 2018-2022 from Section 6 of NIPA Tables, available through
the BEA, here. Data on wages and salaries come from Table 6.2, on value added by in are from Table 6.1,
the number of self-employed from Table 6.7, hours worked by employees from Table 6.9 and corporate taxes
from Table 6.18. In addition, we follow the BLS and use the Current Population Survey (CPS) to impute
weekly hours worked by the self-employed in each of these 14 industries.
The 14 NIPA industries are: (1) agriculture, forestry, fishing, and hunting, (2) mining , (3) utilities, (4)

construction, (5) manufacturing, (6) wholesale trade, (7) retail trade, (8) transportation and warehousing,
(9) information, (10) finance, insurance, real estate, rental, and leasing, (11) professional and business
services, (12) educational services, health care, and social assistance, (13) arts, entertainment, recreation,
accommodation, and food services, and (14) other services, except government.
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A-3 Easy and Hard Tasks

The procedure used for classifying “easy-to-learn” (or “easy”) and “hard-to-learn” (or

“hard”) tasks is described at a high level in the text. Here I provide further details.

We start with Eloundou et al’s exposure measure and focus on three features of tasks (i)

primary verbs, (ii) IWAs, and (iii) topic clusters coded by LDA.

1. Primary verbs: Each task on O*NET has a task description that starts with at

least one verb. These “primary” verbs are informative about what the task involves

and how easily a task can be automated using AI. In particular, verbs that indicate

objective measurement possibilities for the outcome (e.g., calculate or quantify) or

involve predictable rules that allow for easy mapping to outcomes (estimate) are more

likely to be associated with easy tasks.

We manually classified verbs as easy, hard or uncertain, where the last category con-

tains verbs that are harder to classify or involve both harder and easier elements (for

which the context will be important as I describe next). The full list of verbs and their

classifications are provided in the replication package, and the most common hard and

easy verbs are listed in Table A-1 in this Appendix.

2. Intermediate Work Activities: Each task on O*NET is situated within a hierarchy

and is associated with at least one Detailed Work Activity (DWA), which is a coarser

description of the task. Each DWA is in turn associated with at least one Intermediate

Work Activity (IWA), which is at a higher level aggregation. There are 19264 tasks

and 332 IWAs in O*NET. While verbs are informative on whether the observed act is

associated with a predictable outcome, IWAs provide context about the observability of

the outcome. For example, explaining can be hard-to-learn when it is in the context of

teaching key concepts to elementary school students, but easy-to-learn when it involves

explaining the rules of a parlor game. We manually classified each IWA as easy or hard

taking this context into account. The replication package also includes the exact list

of IWA classifications.

3. Topic clusters: We use a separate unsupervised learning algorithm, the Latent Dirich-

let Allocation (LDA) algorithm (Blei et al., 2003), to determine probabilistic topic

clusters. Topic clusters provide an additional layer of context for the algorithm. We

apply the LDA algorithm to all 19264 tasks to generate 100 topic clusters. LDA lever-
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ages word co-occurence within task statements to determine probabilistic assignment

of each task to topic clusters.

We use the output of these three steps with our supervised learning model, which is a

gradient boosted classifier (GBC) (Friedman, 2001). GBCs maximize goodness-of-fit over a

training set by iteratively generating partitions. We produce the training set by manually

classifying 757 of the 4089 exposed tasks. The GBC produces the best fit for these 757 tasks,

and we obtain the output of the classifier for the remaining tasks. The inputs into the GBC

are: the verb classification, the IWA classification, and probabilities to belonging to each

one of the 100 topic clusters from the LDA. In addition, we also feed the GBC the empirical

frequencies of each verb being associated with an easy or uncertain task (hard task being the

omitted category), and each IWA being associated with an easy task in our training data.

This information is useful as it provides an empirical measure of the degree of certainty with

which each verb and IWA is classified (analogous to the prior in a Bayesian calculation).

When a task has more than one primary verb, we take the average across these.

The goodness-of-fit of the GBC is quite good. It matches 90% of the manual classification

on our training data and has an AUC (area under the curve) score of 0.99. As output, we

generate the probability of each task being easy-to-learn or hard-to-learn. When calculating

the adjusted TFP scores, we weight each task by the degree of exposure (according to

Eloundou et al) multiplied by the probability scores, to obtain the share of easy-to-learn

tasks in the economy. Further details on the GBC and the training sample are contained in

the replication package.

Finally, it is important to note that because the GBC algorithm is trained and tested

exclusively on exposed tasks, its output is most meaningful for this sample. For example, for

verbs that are absent or rare in this sample, it would not provide a meaningful classification.

Therefore, its output should not be directly extrapolated to non-exposed tasks. Moreover,

because Eloundou et al’s sample is already for exposed tasks, we would expect a higher

fraction of these to be easy-to-learn than for the entire set of tasks. Indeed, as reported

in the text, about three quarters of the wage bill-weighted exposed tasks are classified as

easy-to-learn within this sample.

A-4 Wage and Inequality Calculations

To estimate the general equilibrium impact of AI on wage outcomes, I follow the methodology

used in Acemoglu and Restrepo (2022).
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Hard-to-Learn Verbs

� direct (325)

� supervise (275)

� clean (270)

� select (223)

� participate (197)

� repair (174)

� advise (161)

� train (156)

� instruct (110)

� study (105)

� verify (98)

� consult (97)

� attend (94)

� teach (93)

� oversee (57)

� negotiate (56)

� diagnose (54)

� present (50)

� disassemble (40)

� counsel (39)

� prescribe (36)

� educate (31)

� hire (31)

� visit (28)

� represent (21)

� testify (20)

� patrol (19)

� pour (19)

� scrape (18)

� feed (16)

� care (11)

� accompany (11)

� travel (10)

� mentor (10)

� talk (8)

� nail (8)

� hammer (7)

� hang (7)

� advocate (7)

� feel (7)

� sprinkle (6)

� heat (6)

� mediate (5)

� decorate (5)

� play (5)

� disinfect (5)

� audition (5)

� groom (4)

� furnish (4)

� inject (4)

� cook (4)

� tutor (4)

� wipe (4)

Easy-to-Learn Verbs

� write (219)

� record (191)

� measure (176)

� schedule (81)

� document (78)

� calculate (74)

� drive (67)

� compute (62)

� estimate (62)

� inform (61)

� refer (56)

� process (50)

� respond (43)

� sort (42)

� draw (35)

� update (34)

� notify (33)

� count (22)

� edit (14)

� draft (13)

� revise (13)

� transcribe (11)

� classify (10)

� pay (10)

� send (9)

� solicit (9)

� announce (8)

� translate (7)

� quote (6)

� standardize (6)

� model (6)

� code (6)

� scribe (6)

� proofread (5)

� optimize (5)

� convert (5)

� comply (5)

� adhere (5)

� summarize (5)

� upload (4)

� alert (3)

� detect (3)

� score (3)

� format (2)

� digitize (2)

� diagram (2)

� download (2)

� rewrite (2)

� visualize (1)

� debug (1)

� encode (1)

� reformat (1)

� telephone (1)

Notes: This table displays a subset of verbs which were manually classified as hard-to-learn or easy-to-learn. The frequency

with which each verb appears as primary in the task list among all tasks is displayed in parentheses. Verbs are sorted by

frequency.

Table A-1: Manual Classification of Verbs as Easy versus Hard-for-AI
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We focus on 500 demographic groups defined by age (five age groups), sex, race (white,

Black, Asian, Hispanic and other), education (less than high school, with high school degree,

some college, Bachelor’s degree, and postgraduate degree) and immigration status (native

or foreign-born). We use the 2018-2022 five-year American Community Survey data to

determine hourly wages for workers and windsorize to deal with outliers as in Acemoglu and

Restrepo (2022).

Estimates of the propagation matrix, Θ, are directly from Acemoglu and Restrepo (2022)

and are for exposure to robots, software and dedicated machinery between 1980 and 2016. I

take their estimates of task displacement based on industry labor share declines, reported in

column 1 of Table A-X in the Online Appendix of Acemoglu and Restrepo (2022). The propa-

gation matrix calculates the total spillovers between industry, occupation and age-education

groups for observed changes between 1980-2016. The only difference from Acemoglu and

Restrepo (2022) is that we feed in exposure to AI and its TFP implications, rather than

those related to automation between 1980-2016 due to other technologies, as in their paper.

The quantitative implications are then produced using a fixed-point iteration algorithm

to solve the following set of equations, as in Proposition 4 of Acemoglu and Restrepo (2022):

d lnwg = Θg ·
(
1

σ
d ln y +

1

σ
d ln ζ − 1

σ
d ln ΓAI

)
d ln ζg =

∑
i∈I

ωgi ·
(
∂ ln sYi (p)

∂ ln p
· ln p+ (σ − 1) · d ln pi

)
,∀g

d ln pi =
∑
g∈G

sLgi · (d lnwg − d ln ΓAI
gi · πgi), ∀i

d ln y =
1

1− sK
·
(
d ln tfp + sK · d ln sK

)

d ln sK = − 1

sK

∑
g∈G

sLg · (d lnwg − d ln y) .

Here wg is the wage of group g, Θg refers to the row in the propagation matrix associated

with group g, y is economy-wide GDP, ζ is the vector of industry shares, Γg is AI exposure

for g, ωgi is the share of wages earned by group g in industry i relative to this group’s total

wage income, sYi is the income share of industry i, pi is the price index for industry i, sLgi is

the share of wages earned by members of group g as a fraction of total earnings in industry

i, πgi is cost savings in tasks performed by group g in industry i, sK is the capital share

of income. Finally, Acemoglu and Restrepo (2022) provide an equation for d ln tfp as a
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function of cost savings and industry shares, but rather than using this equation explicitly,

I take the change in TFP from my previous computations. All variables (except y) when

denoted without a subscript refer to G× 1 vectors.

The variables sYi , sLgi and ωgi are computed directly from the American Community

Survey data, supplemented with industry-level labor share data from the BEA at the level

of 49 industries as in Acemoglu and Restrepo (2022). ΓAI is derived from our aforementioned

occupation-level exposure numbers. Specifically, we aggregate from the occupation level to

the industry-group level by first matching occupations with occupation-level AI exposure,

then aggregating this to the industry × demographic group level. For the baseline exposure

results, we set πgi = π̄ = 0.27, which is the average of Noy and Zhang (2023) and Brynjolfsson

et al. (2023), as explained in the text. Finally,
∂ ln sYi (p)

∂ ln p
is computed as in Acemoglu and

Restrepo (2022) by assuming that sectoral outputs are combined in GDP with the constant

elasticity of substitution of η = 0.2 (as explained in the text).

For easy versus hard tasks, I repeat the same procedure, except that I use separate

exposure measures for exposure to AI in easy tasks and exposure to AI in hard task for each

demographic groups.
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