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ABSTRACT

We propose a duration-based explanation for the premia on major equity factors,
including value, profitability, investment, low-risk, and payout factors. These fac-
tors invest in firms that earn most of their cash flows in the near future and could
therefore be driven by a premium on near-future cash flows. We test this hypothesis
using a novel dataset of single-stock dividend futures, which are claims on dividends
of individual firms. Consistent with our hypothesis, the expected CAPM alpha on
individual cash flows decrease in maturity within a firm, and the alpha is not related
to the above characteristics when controlling for maturity.
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In this paper, we provide a simple framework for understanding the major equity risk
factors in asset pricing. We focus our analysis on value, profit, investment, low-risk, and
payout factors. These five categories of risk factors have a large impact on stock prices
given their high persistence, and they form the basis of leading factor models such as the
Fama and French models.! Yet the economics behind these factors are not well understood
because the factors are hard to relate to common economic fundamentals. We relate the risk
factors back to economic fundamentals, and identify the source of their high risk-adjusted
returns, by studying the timing of the cash flows of the firms in the portfolios of the risk
factors. The analysis centers around the duration of cash flows, which is the value-weighted
time to maturity of a firm’s future cash flows.

We find that the risk factors invest in firms that have a short cash-flow duration. This
finding is illustrated in Figure 1.a, which plots the future cash flows for firms in the long
and short leg of each risk factor, averaged across risk factors. Each cash flow is measured
by its present value relative to the present value of all the future cash flows. As shown in
orange, the firms in the long leg have relatively large near-future cash flows and therefore
a short cash-flow duration. The opposite is the case for the firms in the short leg, which
are shown in blue. The figure is based on an average of the major risk factors (and its
construction is detailed in the sections below), but we obtain similar results for all the
individual risk factors on their own. These risk factors thus share a fundamental economic
characteristic, the duration of their cash flows, and can accordingly be summarized by a
new duration risk factor.

More importantly, the fact that the risk factors invest in short-duration stocks is key
to understanding their expected returns. Indeed, previous research on the equity term
structure finds that claims on near-future cash flows on the market portfolio have high
risk-adjusted returns.? A natural extension of this finding is that near-future cash flows on
individual firms also have high risk-adjusted returns. In fact, we argue that the major risk
factors arise as a product of this premium on near-future cash flows.

To understand our argument, note that the expected return on a given stock, or asset,

can be written as the value-weighted return on all of its future cash flows:

Elrea] =Y wl'Erity), (1)
m=1

where 77}, is the one-period excess return on the ¢ + m cash flow and wj" is its ex-ante

!For example, Fama and French (2015).

2For example, Binsbergen, Brandt, and Koijen (2012), Binsbergen and Koijen (2017).



Fig 1.a: Relaftive Size of the First Fifteen Cash-Flows for the Firms the Risk Factors Invest in
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Figure 1: The Timing and Pricing of the Cash Flows of the Major Risk Factors
Figure 1.a shows the relative present value of future dividends for firms in the long and
short leg of a duration risk factor, which is a combination of the profit, investment, low-
risk, and payout factors. All present values are calculated using a nominal discount rate
of 10%. Standard-error bars (1 SE) use the delta method and the procedure in Chen
(2017, Appendix A), which accounts for serial correlation and cross-correlation across
portfolioxmaturity using the Driscoll-Kraay estimator with 15 lags. Figure 1.b shows
the CAPM alpha on single-stock dividend strips for firms in the long and short leg of the
risk factor. Figure 1.c shows the CAPM alpha of corporate bonds for firms in the long and
short leg of the risk factor. The samples are 1929-2019 for Figure 1.a, 2010-2019 for Figure
1.b, and 2002-2016 for Figure 1.c.

relative present value. Our hypothesis is that, for a given maturity, risk-adjusted returns
on cash flows are more or less the same across firms. However, the returns decrease in
maturity for all firms. Firms with higher weights on near-future cash flows therefore have
higher risk-adjusted returns.

We provide direct evidence of such a duration-based explanation using novel data. We



study a dataset of single-stock dividend futures, which are claims to stock level dividends
that are paid out during a given calendar year. These are often referred to as dividend
strips and can be thought of as the equity equivalent of a zero-coupon bond for an individual
firm, only with the face value being the stochastic dividend. These dividend strips allow
us to study the return to the individual cash flows of individual firms. We find that the
risk-adjusted return decreases with the maturity of the cash flows, but they do not vary
systematically across the underlying firms — for instance, the three-year claim on a value
firm has the same risk-adjusted return as the three-year claim on a growth firm. This
finding is illustrated in Figure 1.b, which shows the CAPM alpha on the cash flows of the
long and short leg of the risk factors. For both legs of the risk factors, the alphas start
at around 8% percent per year for the one-year claim and decrease to around 4% for the
four-year claim. Moreover, for each maturity, the risk-adjusted returns are almost the same
for both legs of the risk factors.

As this exercise shows, the single-stock dividend futures allow us to hold fixed all the
characteristics of a given firm and vary only the maturity, or duration, of claims on that
firm’s cash flows, and conversely to hold fixed the cash-flow maturity and vary the firm
characteristics. The dividend futures thus allow us to directly identify a relation between
duration and stock returns that cannot be explained by firm-level characteristics. We
provide further detail on this strategy in Section ['V. This type of identification is unique
within the cross-section of stock returns, in which we usually cannot obtain model-free
identification of the role of a given characteristic.

The single-stock dividend futures trade in an established market on the Eurex exchange.
We observe around €4 billion notional outstanding by the end of our sample in 2019, which
is on the same order of magnitude as the market for the index dividend futures studied
by Binsbergen and Koijen (2017). The main players in the dividend futures market are
financial intermediaries and institutions, which are often considered important in price
determination in the cross-section (e.g. Adrian, Etula, and Muir, 2014).

We also provide a robustness analysis using corporate bonds. Like the dividend strips,
the corporate bonds allow us to study the returns to claims on horizon-specific cash flows
of individual firms. The payoff on a corporate bond is dependent on the firm’s cash flow at
maturity, and the bond is thus approximately a claim on this cash flow, allowing for return
comparisons across horizons. The evidence provided by these comparisons is not as direct as
the evidence provided by dividend strips, given additional features of corporate bonds (e.g.,
optionality). But the bonds are available for a longer time series and longer maturities,
and they are traded in larger volumes, all of which make them useful for robustness. As

summarized in Figure 1.c, we again find that the CAPM alpha on cash flows are similar



across firms but decrease in maturity, consistent with a premium on near-future cash flows.
While this corporate bond analysis is intended as a robustness check, the consistency of
these results with the dividend-strips analysis provides a promising possible avenue for
unifying the cross-section of equity and debt.

We emphasize that all the above results relate mainly to CAPM alphas. In particular,
it is the CAPM alpha on stocks, dividend strips, and corporate bonds that decreases in
maturity. For equity claims, the expected returns also decrease slightly in maturity, but
the effect is insignificant for dividend strips and only marginally significant for stocks.® Our
organizing fact is thus that near-future cash flows have high returns relative to conventional
measures of risk, such as market beta and volatility (leading, respectively, to high CAPM al-
phas and high Sharpe ratios).” As noted by Cochrane (2011, p. 1059), “All |cross-sectional]
puzzles are joint puzzles of expected returns and betas” (emphasis his). Our unifying ex-
planation of the cross-sectional factors we consider is accordingly an explanation of CAPM
alphas.

We next address why near-future cash flows have high CAPM alphas. A natural ex-
planation is that near-future cash flows are riskier than their market betas suggest. For
example, Gormsen and Koijen (2020) show that the value of near-future dividends drops
by as much as 40% during February and March of 2020 as the coronavirus crisis unfolds,
substantially more than suggested by their unconditional betas. If near-future dividends
are highly exposed to such bad economic shocks, it may help explain why their returns
are high relative to more-conventional measures of risk.” We address this possibility by
studying the consumption risk in duration-sorted portfolios. We find that the market-
adjusted returns on short-duration firms are positively exposed to consumption risk while

the market-adjusted returns on the long-duration firms are negatively exposed to consump-

3The fact that CAPM alphas decrease in maturity more than expected returns is consistent with the
results on the equity term structure, for which the robust finding is that risk-adjusted returns decrease
in maturity, whereas the effect on returns is debated. Indeed, Binsbergen, Brandt, and Koijen (2012)
find a negative but insignificant relation between expected returns and maturity. Binsbergen and Koijen
(2017) also find a negative relation between maturity and expected returns but emphasize that the relation
between maturity and risk-adjusted returns is much stronger (cf. Bansal, Miller, Song, and Yaron, 2020).

4Unsurprisingly, longer-duration portfolios have higher market betas; perhaps more surprisingly, their
average returns are nearly identical to the average returns on short-duration portfolios, leading to significant
alphas on those short-duration portfolios.

5See models by Lettau and Wachter, 2007; Hasler and Marfe, 2016.



tion risk. This finding suggests that consumption risk may play a role in the premium on
near-future cash flows and thus the premium on the duration factor.’

However, the data also do not rule out the possibility of an additional behavioral driver
that is unrelated to a premium on near-future cash flows. Indeed, while we find no relation
between firm characteristics and expected CAPM alphas on the dividend strips, we do find
a relation between firm-level growth rates and realized CAPM alphas. In particular, div-
idend strips for high-growth firms (long-duration firms) have low realized CAPM alphas,
even controlling for maturity. Such a negative relation between growth rates and realized
alphas is consistent with theories of overreaction in which investors overestimate the ex-
pected growth rates on high-growth firms (La Porta, 1996; Bordalo, Gennaioli, La Porta,
and Shleifer, 2019). The relation between growth rates and realized alphas is generally sta-
tistically insignificant but it nonetheless leaves open the possibility that the duration factor
is not only driven by a premium on near-future cash flows but that behavioral overreaction
plays a role as well.

Finally, it might be surprising, at first glance, that the major risk factors all share the
common economic feature of investing in firms with a short cash-flow duration. We argue,
however, that this commonality can be interpreted intuitively. Consider, for instance,
firms with low investment and high payout ratios, which are firms that the long legs of
the investment and payout factors invest in. Because both of these characteristics imply
that the given firms invest only sparsely in future projects, they also naturally imply that
the firms will have low growth and thus a short cash-flow duration. Similarly, high-profit
firms have short duration because they have large profits today relative to the value of
future profits. Firms with high valuation ratios are referred to as growth firms precisely
because of the high present value of growth opportunities implied by those ratios, and
therefore naturally have long cash flow-duration in general (and conversely for firms with
low valuation ratios). Finally, a low beta is often a symptom of a short cash-flow duration.
Indeed, firms with short cash-flow duration are less exposed to the discount-rate shocks
that account for much of the variation in aggregate prices, causing them to comove less
with the market and thus have low betas.”

The remainder of the paper proceeds as follows. We discuss our relation to previous

6 Alternative explanations of why the premium on near-future cash flow exists include risk pricing
(Eisenbach and Schmalz, 2016; Lazarus, 2019), behavioral (Cassella, Golez, Gulen, and Kelly, 2019), or
institutional (Belo, Collin-Dufresne, and Goldstein, 2015) mechanisms.

"The fact that short-horizon cash flows are less exposed to discount-rate shocks is a feature shared by

fixed-income securities. This commonality in part motivates our use of the term duration in describing the



literature immediately below. Section 1 then explains our data and methodology. Section
2 documents that the major equity risk factors invest in short-duration firms. Section
3 uses this fact to introduce a new duration risk factor, and shows that it summarizes
most of the major equity risk factors; that it works well in a broad global sample; and
that it provides a robust and meaningful contribution in explaining the cross-section even
relative to a large set of previous factors. Section 4 studies single-stock dividend futures
and corporate bond returns to isolate duration as a driver of risk-adjusted returns on
the duration factor. Section 5 studies the economic mechanisms behind our results on

duration-driven returns.

Related Literature: Our paper relates to a literature on duration and the cross-
section of stock returns. Dechow, Sloan, and Soliman (2004) study a measure of cash-flow
duration in the cross-section of US stock returns. Lettau and Wachter (2007) provide a
model in which the value premium is explained by the short cash-flow duration of value
firms. More recently, Weber (2018) shows that the relation between duration and stock
returns is stronger when sentiment is higher, and Chen and Li (2018) and Gongalves (2020)
argue for a duration-based explanation of the profitability and investment premium. We
provide a series of contributions to this literature as explained below.

First, we directly link five major characteristics to duration by studying their relation to
cash flow growth, highlighting that these characteristics are similar along a key dimension.®
This similarity is sufficiently pronounced that the characteristics can be combined into, and
in large part explained by, a single duration factor.” We provide evidence that this risk
factor price long-run returns well, that it is priced in a broad global sample, and that it

can be at least partly explained by exposure to consumption risk.

timing of cash flows accruing to equity-holders, by analogy to its use for fixed-income securities.

8Previous research by Chen (2017) has studied the growth rates of the firms in the value factor. Chen
finds that value firms grow faster, not slower, than growth firms, which challenges the duration-based
explanation for the value premium. However, this result only holds in the early US sample and we show
that it is driven by microcap firms. When excluding the smallest 20% of listed firms, the cash flows of value
firms indeed grow slower than those of growth firms, both in the full sample and in the modern sample
that we consider. See section I1.C for detail.

9The finding helps explain why the different risk factors often subsume each other in factor regressions,
a finding that has caused debate in the asset pricing literature (Asness, Frazzini, Gormsen, and Pedersen,

2020; Bali, Brown, Murray, and Tang, 2017; Fama and French, 2016; Liu, Stambaugh, and Yuan, 2018).



Second, and crucially, we provide identification of the role of duration. Previous studies
have documented a correlation between duration and returns, but there is no evidence
that duration actually influences returns. That is, it is unclear whether short-duration
firms have high alpha because of the cash-flow duration or because of other characteristics
associated with short-duration firms, such as low valuation ratios. Unlike other papers in
prior literature, we directly identify an effect of duration using dividend strips, as discussed
in detail in Section I'V. This point is important not only for the literature on duration but
for the literature on the cross-section more generally; to our knowledge, no prior study has
been able to obtain model-free identification of a proposed risk factor.

More generally, the dividend strips allow us to study the returns on individual cash flows.
Hansen, Heaton, and Li (2008) emphasize the importance of studying individual cash flows
separately, but the lack of data has challenged this approach. The dividend strips fill this
gap, allowing for more careful analysis of asset pricing dynamics going forward. Almost
any model of the cross-section is going to make predictions about prices of individual cash
flows of individual firms; going forward, such predictions can now be tested and disciplined
by data.

We also contribute to the literature on the aggregate equity term structure. Binsbergen
and Koijen (2017) document that the risk-adjusted returns on claims to all dividends on the
market portfolio decrease in maturity.!” However, this result could be driven by how the
composition of the market portfolio varies over the term structure. We extend the evidence
and show that risk-adjusted returns also decrease in maturity for single-stock dividends,
implying that the result on the aggregate dividends are not driven entirely by composition
effects. More generally, our paper contributes to the role of duration in understanding stock
prices (Binsbergen, 2020).

Our paper also relates to a recent literature on the so-called factor zoo.!! The goal
of this literature is to determine which characteristics are most important for predicting

returns. The literature achieves this goal mainly through statistical analysis. We differ

1OMiller (2020), Chen (2020), and Giglio, Kelly, and Kozak (2020) study the slope of the equity term
structure in the cross-section of stock returns using different methods. In addition to the literature review
in Binsbergen and Koijen (2017), see also Andrews and Gongalves (2020), Cejnek and Randl (2020), and
Gormsen (2021) for evidence on aggregate term structures.

HSee, for instance, Feng, Giglio, and Xiu (2020); Giglio, Liao, and Xiu (2020); Harvey and Liu (2017);
Harvey, Liu, and Zhu (2016); Kozak, Nagel, and Santosh (2020).



in our approach and shrink the cross-section based on economic intuition.'?> We use basic
economic arguments, coupled with analysis of dividend growth rates and novel dividend
futures data, to argue that a range of the most prominent characteristics are symptoms of
short-duration cash-flows, and that many cross-sectional anomalies can thus be explained
by a duration characteristic, which in turn is consistent with the evidence on the equity

term structure of the market portfolio.

I. Data and Methodology

A.  Equities

We study equities in a global sample covering 67,842 stocks in 23 countries between
August 1926 and December 2019. The 23 markets in our sample correspond to the countries
belonging to the MSCI World Developed Index as of December 31, 2019. Stock returns are
from the union of the CRSP tape and the XpressFeed Global Database. All returns are in
USD and do not include any currency hedging. All excess returns are measured as excess
returns above the US Treasury bill rate. Data needed to construct investment, profit, and
payout characteristics are available from 1952.

We study risk factors both in the individual countries in our sample and in a broad
global sample. Our broad sample of global equities contains all available common stocks
on the union of the CRSP tape and the XpressFeed Global database from 1990 until 2019.

B.  Single-Stock Dividend Futures

We obtain daily prices on single-stock dividend future from Deutsche Borse, which is
the owner of the Eurex Exchange on which the futures trade. The sample runs from 2010
to 2019 and contains 190 different firms. We match the underlying firms of the dividend
futures to our equity database using the ISIN. We explain the nature of the data and the
steps we take in detail in section IV and Appendix B.

C. Bond Returns

We obtain bond returns from WRDS Bond Return database. Our sample includes
23,211 bonds issued by 1,352 US firms and runs from July 2002 to January 2016.

12We do, however, use the Feng, Giglio, and Xiu (2020) test to assess the contribution of our duration

factor relative to previous factors, and it performs well in this test; see Internet Appendix D.



D. Expectations

We obtain long-term growth (LTG) expectations from the IBES database, for which
data are available 1981-2019. These are defined as annualized expected earnings growth

I G

rates over a company’s “next full business cycle.” In parts of the analysis, we transfer these
into cross-sectional percentiles. In other parts, we work with the annualized numerical

earnings growth values directly. In all cases we use median estimates for expected dividends.

E.  Defining Cash-Flow Duration

Macaulay (1938) defines cash-flow duration as the weighted-average years to maturity

of an asset’s expected cash flows:

o0

Dur, = Zz X Wy (2)
m=1
The weight wj" is the present value of the given cash flow relative to the total value of the

assets:

m ECF /(1 +7)"
Wwh = 2 : (3)

where C'F},, is the realized cash flow in period t+m, r is the yield to maturity on the asset,
and P, is the price of the asset. The weights w;" are slightly different than the weights in
equation (1) from the intro; the weights wj™ are based on present values that are calculated
using the yield on the equity, whereas the weights w}" in (1) are based on the prices of the
individual cash flows (i.e. using cash flow-specific discount rates).

As can be seen in equation 3, cross-sectional variation in duration comes from differences
in expected growth and discount rates The higher the growth rate and the lower discount
rate, the larger the weight on the distant future cash flows and the longer the duration.

As discount rates are ultimately the variable we seek to explain, we focus most of our
analysis on variation in duration that comes from variation in growth rates. Indeed, the
analysis in Section II centers on understanding the timing, or growth rate, of cash flows.
Similarly, the duration characteristic we introduce in Section III is in fact a growth rate
characteristic. In the of dividend strips in Section IV, the timing and duration of cash flows

is conveniently the same as the strips only have one payment.



II. The Timing of Cash Flows for the Major Risk
Factors

We first document that the major risk factors invest in firms with low growth rates.
Because these firms have low growth rates, their near-future cash flows ceteris paribus are
large relative to their distant-future cash flows.'?

We focus our analysis on value, profitability, investment, low-risk, and payout factors.'*
We consider commonly used versions of these risk factors, which are based on the following
characteristics: high book-to-market, high operating profitability to book equity, low annual
growth in total assets, low market beta, and high payout ratio. The precise definitions
of the characteristics can be found in Appendix A. Throughout the paper, we sign all
characteristics such that a higher characteristic value implies a higher CAPM alpha. We
start this section with an analysis of realized growth rates before moving to expected growth

rates.

A.  Realized Growth Rates

We first look at the relation between characteristics and realized growth rates. To do so,
we create 50 characteristics-sorted portfolios, 10 for each characteristic. For each portfolio
1 and year t, we calculate growth rates in dividends and earnings from year ¢ to ¢t + 15 and

regress them on the vector of time-¢ characteristics X; :
Growth rate; ¢ 115 = Bo + X, B + €4 (4)

The methodology for calculating growth rates is provided in Appendix A. For this exercise,
all characteristics are measured as percentiles of the firm-level cross-sectional distribution

in t and then aggregated to the portfolio level, and we include time fixed effects in the

I3 As discussed at the end of Section 1, we abstract here from the effect of discount rates on duration.
But as we will argue below, firms with high growth rates in fact also have lower discount rates, which
reinforces the positive effect of growth rates on duration.

14We consider these risk factors given their prominence in the post-Fama and French (1993) literature,
and the fact that their persistence suggests that they are quantitatively important for explaining valua-
tion ratios in addition to expected returns (in contrast to, e.g., momentum or other pricing factors less
directly related to firm characteristics). But any such selection is of course subjective, so we consider the

applicability of our framework for other anomalies in Internet Appendix D and E.
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regression. We consider the 1963-2019 sample to align with Fama and French, and time ¢
is the end of July of the given year.

Panel A of Table 1 reports the results of regression (4). The first row uses ex-post
dividend growth rates on the left hand side. These growth rates load negatively on all
the characteristics, though the effect is insignificant for investment. The next row uses
ex-post earnings growth rates on the left hand side. These results are similar, with beta
now insignificant and with the loading on investment now positive but still insignificant.
Given the noise in earnings, the R? in the earnings-growth regression is much lower than
that of the dividend-growth regression in the first row (0.05 vs. 0.38). These results provide
suggestive evidence that the characteristics are associated multivariately with low growth
rates, with the more-predictable dividend growth rates yielding somewhat stronger results.

In both cases, however, the results in Panel A may be biased upward: these charac-
teristics may predict returns in part because the given firms in high-return portfolios have
overperformed in-sample, generating higher cash-flow growth than expected. If this were
the case, then the actual relation between characteristics and expected growth rates would
be more strongly negative than presented here. In addition and perhaps more importantly,
these results are only at the portfolio level, which limits statistical power.!> We thus move

next to a firm-level analysis using ex ante expectations data.

B. Expected Growth Rates

To get more precise results and more power, we next consider the contemporaneous re-
lation between characteristics and ex-ante expected growth rates from IBES. These expec-
tations are known to embed their own biases discussed further below. For now, however, we
are interested only in the rankings of expected growth rates, as we consider cross-sectional
percentile values for this estimation. As documented further below, the IBES-based expec-
tations do correctly rank the firms’ growth rates on average.

Panel B of Table 1 documents the univariate correlation between the expected growth
rate and the contemporaneous characteristics of the same firm. The long-term expected
growth rate is negatively correlated with all the characteristics, in line with the analysis in
Panel A.

To go beyond univariate correlations, we run the following panel regression of expected

15 A firm-level analysis with realized growth rates would be subject to survivorship bias issues, particu-

larly at such a long horizon. The above analysis is thus intended as a first-pass summary.
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growth rates on contemporaneous characteristics:
LTGj, =T + X5, B + €4, (5)

where LTG;; is the median expected long-term growth for firm j at time ¢, and X,
is a vector containing the firm-j characteristics at time ¢, again both transformed into
cross-sectional percentiles. The firm fixed effects I'; are only included for a subset of the

16 Our baseline analysis uses the number of analysts by firm as regression

regressions.
weights, though we consider alternative specifications as well.

Panel C of Table 1 shows the US results. The LTG expectations load negatively on all
the characteristics. In our baseline results (columns (1)-(3)), we exclude firm fixed effects,
meaning right hand side variation is driven by both permanent and transitory differences in
characteristics. With firm-level fixed effects (columns (4)-(6)), the results are again highly
significant and negative but quantitatively smaller in magnitude. The result holds across
sample splits and using different regression weights. The R? is high in all specifications.
The characteristics thus all predict low expected growth rates, even multivariately, and
they jointly explain expected growth rates well.

We obtain similar results in our international (non-US) sample, as shown in Panel D of
Table 1. In our baseline regressions, weighted by number of analysts, the expected growth
rates again load negatively on all of the characteristics. The results are robust to using
market-cap weights, but they are not completely robust to removing weights or splitting
the sample in the international case.

Panel A of Figure 2 shows the estimated loadings of expected growth rates on charac-
teristics for each individual country in our sample.!” The clear majority, more than 85%,
of the parameter estimates are negative. Panel B zooms in on the G7 countries. Again,
almost all estimates are negative, with the exception being the investment characteristic

which is slightly positive in a few countries.

16Given the use of cross-sectional percentile values for all variables, the estimation implicitly incorporates
date fixed effects as well.
17See Figure Al of the Internet Appendix for the same results split out by individual characteristic,

which shows more clearly which characteristics have varying loadings across countries.
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C.  Comments and Relation to Previous Research

The long-term growth rates are ideal because we directly link the characteristics to
ex ante expectations. By doing so, we avoid drawing our inference based on ex post re-
alized growth, which would be biased to the extent that the characteristics are (at least
partly) products of data mining. On the other hand, the IBES expectations figures might
themselves be biased and not reflect true consensus earnings-growth expectations. There
is indeed evidence — see, for example, Chan, Karceski, and Lakonishok (2003) — that
the long-term growth rates suffer from overreaction. However, as documented in the next
section, these expectations are not pure noise. Firms with high expected long-term growth
do have higher realized ex post growth rates than firms with low long-term growth expec-
tations.'® This latter property is sufficient for our purposes in this section, as we measure
expectations in cross-sectional percentiles and only focus on qualitative relations between
growth rates and characteristics.

The results on the book-to-market ratio may seem counter to the findings of Chen
(2017), who studies realized growth rates of value and growth firms. Chen finds that value
firms have lower growth rates than growth firms in his modern sample period (post—1963),
but that they have higher growth rates in the early sample (1926-1962) and in the full
sample. Two points of relation between Chen’s results and ours merit comment. First,
for this analysis we are also studying the modern sample period (post—1952, or 1981 when
IBES data is needed), and our results are thus consistent within this period. Second, and
more importantly, the results in the early sample are driven by micro-cap firms. Once we
discard the smallest 20% of listed firms, value firms have lower growth rates in the full
sample as well, as documented in Internet Appendix Table A1.19:2

In conclusion, the major risk factors share a common feature, namely that their long

18The earlier literature also contested the claim that these expectations had any predictive power over
realized growth. We do not find support for this finding in the updated data. But we do find evidence that
the expectations tend to be upwardly biased on average, consistent with Chan, Karceski, and Lakonishok
(2003).

YMicro-cap firms have a strong effect on the results given that Chen (2017) forms portfolios by sorting
univariately on book-to-market. This ratio is known to be highly correlated with firm size, implying that
some of the portfolios contain a relatively large number of micro-cap firms.

20Chen (2017) also studies growth rates of “rebalanced” portfolios, which are the usual portfolios studied
for purposes of forward-looking expected-return predictions. (The label “rebalanced” as used here in fact

refers to portfolios that are both rebalanced and refreshed every calendar year.) But these portfolios
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legs invest in firms with low growth rates relative to their short legs. In the next sections,

we address the asset pricing implications of this new stylized fact.

III. Factor Regressions

The previous section emphasizes that the firms in the major risk factors are similar
along a key economic characteristic, namely the timing, or growth rate, of their cash flows.
In this section, we combine the major risk factors into a single low-growth factor to study
the similarity of the risk factors in return space. We find that the premia on the major risk

factors to a large extent can be summarized by this combined factor.

A.  Factor Characteristic

To explore the similarity of the major risk factors, we first combine the characteristics
underlying the major risk factors into a single low-growth characteristic. Since the major
characteristics are all associated with a low growth rate, one approach would be to equal-
weight the characteristics into a single low-growth characteristic, something we explore in
the Internet Appendix. In the main specification, however, we instead exploit that some
characteristics appear more strongly related to the growth rates than others. In particular,
we construct the combined characteristic as the weighted average of the profit, investment,
beta, and payout characteristics, where the weights are given by the factor loadings in
regression (5) in Panel C of Table 1. We exclude book-to-market from our combined
characteristic because sorting on book-to-market ratios involves sorting on prices, which is
ultimately the variable we seek to explain.?!

Given this construction, the low-growth characteristic measures the expected growth

rate of the firm, conditional on the firm’s book-to-market ratio.?” Empirically, the charac-

provide little evidence on firm-level growth rates, as discussed on p. 2281 of Chen (2017). Instead, they
largely reflect the relative performance of value and growth firms, as shown in Section IV of Chen (2017).

21Tn the Internet Appendix, we provide robustness analysis on two alternative methods for computing
this characteristic. The first, as above, uses the equal-weighted average of the characteristics instead of the
weighted average; the second includes the book-to-market characteristic as well. Our main results in this
section are unchanged when using the equal-weighted average and differ only slightly when also including
the book-to-market characteristic (see Table A9).

22For two firms with the same book-to-market ratio, the characteristic captures the difference in expected

growth. Empirically, the characteristic is close to uncorrelated with book-to-market ratios, so sorting
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teristic is associated with both a low growth rate and a high expected return, as documented
below. Both of these contribute to a shorter cash-flow duration (see Section [.E), and we
therefore refer to the combined characteristic as a duration characteristic, but we emphasize
again that the characteristic omits variation in duration coming from the book-to-market

ratio.

B.  Properties of the Duration Portfolios and Factor

Table 2 studies returns on ten portfolios sorted on our duration characteristic, from
short to long duration. The portfolio breakpoints are based on NYSE firms and refreshed
every year. The portfolios are value-weighted and rebalanced each calendar month. As can
be seen in the first row, the average monthly excess returns decrease slightly as duration
increases, but the effect is non-monotonic and statistically insignificant. However, the
CAPM alpha decreases almost monotonically as the duration increases. This effect is
both economically and statistically significant as the long-short portfolio has an alpha
of -0.79% per month, with a t-statistic of -4.94. As discussed in the introduction, our
unifying explanation of the cross-sectional factors we consider is accordingly an explanation
of CAPM alphas.

The last row of Table 2 also reports the realized and expected cash-flow growth rates
of the portfolios. The expected cash-flow growth rate is based on the long-term growth ex-
pectations in the subsample where we have expectations data. Expected cash-flow growth,
as measured by the long-term growth rates from IBES, increases monotonically as portfolio
duration increases. More importantly, the realized growth rates also increase monotoni-
cally. The realized growth rates are for the full sample, so they do not directly compare to
the expected growth rates from the 1981-2019 sample. This issue aside, it does appear that
the expected growth rates are biased upward relative to the realized growth rates, though
this bias does not affect the ranking of portfolios’ cash-flow growth rates ex post relative
to ex ante. To put the growth rates in perspective, we calculate realized duration under
the assumption that the realized growth rates continue forever and that the discount rate
is equal to the realized average market return for all stocks. As shown at the bottom of
Table 2, the realized duration varies from 15 years for the short-duration portfolios to 59
years for the long-duration portfolio, suggesting that the differences in growth rates lead

to sizable differences in cash-flow duration.

portfolios on this characteristic is conceptually similar to considering double-sorted portfolios that are

sorted first on book-to-market and then on expected growth rates.
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Table 3 analyzes returns on our duration factor, which is constructed using the Fama
and French (1993) method.”® The factor goes long the short-duration firms and short long-
duration firms. The US results in Panel A are largely similar to the results in Table 2:
the factor has only marginally significant expected returns but a highly significant CAPM
alpha of 0.50% per month (Z-statistic of 5.64). The large alpha is driven neither by the
small cap firms nor by the short leg of the portfolio alone. The results is robust across
subperiods, as can be seen in Figure 3, which plots the cumulative alpha and return.

The two last rows of Panel A in Table 3 show the expected and realized dividend growth
rates of the different portfolios in our duration factor. Both of the long-duration portfolios
have realized and expected growth rates above those in the short-duration portfolios. The
realized growth rates are from the full sample whereas the expected growth rates are from
the 1981-2019 sample. Figure 4 further shows the cumulative dividend growth for the short-
and long-duration portfolios as a function of time after the portfolio formation period. As
can be seen in the figure, the long-duration firms have higher growth rates than the short-
duration firms in every year after the formation period. After 15 years, the earnings of
the long-duration portfolio have increased by almost 100 percentage points more than the
short-duration portfolio. These results verify that our measure of ex ante duration indeed
predicts ex post differences in growth rates (and thus duration).

Panel B of Table 3 reports the performance of the duration factor in the global sample.
The factor has a positive and statistically significant CAPM alpha of 0.44% per month.
Similarly, Figure 5 shows that the factor has positive alpha in 20 out of 23 countries in
our sample, and that it is statistically significant in the majority of them as well, despite
the sample being quite short in many exchanges. Given that the characteristics and load-
ings that underlie our duration factor are all based on our analysis in the US data, this

international evidence mitigates data mining concerns.

23Each June, we sort stocks into six portfolios using breakpoints based on the median market capital-
ization and the 30th and 70th percentiles of the duration characteristic. In the US, portfolio breakpoints
are unconditional and based on NYSE firms. In the international sample, breakpoints are conditional
and based on the largest 20% of firms. (We follow standard practice in using conditional breakpoints for
the international data given small-sample issues; see, for example, Asness, Frazzini, and Pedersen (2019).)

Portfolios are value-weighted and rebalanced at the end of each calendar month.
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C.  Spanning Regressions

We use three-factor regressions to study the extent to which our duration factor sum-
marizes the five major equity risk factors studied in Section 2. For each factor, we regress
the returns onto the market, a small-minus-big portfolio, and the duration factor in the

following regression:
i i i Mkt _ .f i .Smb i .Dur
Tis1 = Opur + Bake (M1 — 7)) + BambTed1 + Bbulth1 + €1, (6)

where 7}, is the excess return on risk factor i. The small-minus-big factor is based on the
six portfolios sorted on duration and size that are used to construct the duration factor.
The size factor goes long the small firms and short the large firms. Including the size
factor does not influence our results much, as our left-hand-side variables are size-neutral
by construction. However, without the size factor, the model struggles to explain portfolios
that are not size-neutral. On average, small stocks have higher growth rates than large
stocks, which means they are long-duration stocks. As such, based on duration alone,
one would expect them to have low returns, but empirically the small firms have high
returns. This size premium could potentially arise from liquidity effects or from other
market microstructure issues related to small firms. But regardless of the origin of this
premium, it illustrates that our duration factor of course does not (along with the market)
explain the entirety of the cross-section.

Panel A of Table 4 presents results of our factor regressions in the US. The first three
columns of Panel A show the results from the CAPM regressions using the market alone.
The risk factors all have positive and statistically significant CAPM alphas. In addition,
they all have negative CAPM betas.

We next consider the three-factor regressions in the middle columns. The major risk
factors all load positively on our duration factor in these regressions. The loadings are
statistically significant. The remaining alphas for the factors are all insignificant in the

124

three-factor model.”* Panel B reports similar results in the global sample. The major risk

factors all load on our duration factor, and the remaining alpha is insignificant, except for

24While the table reports results from the three-factor model including a small-minus-big factor, the
duration factor is in fact providing the bulk of the explanatory power and reduction in alpha. The average
R? value in analogous two-factor regressions, including only the market and the duration factor, is 0.48
(compared to 0.52 for the three-factor results in the table); similarly, the average alpha in these two-factor

regressions is 0.07% per month (compared to 0.02% per month in the three-factor case).
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the profit factor.

We provide additional analysis in the Internet Appendix. Table A2 finds that the
duration factor generally has positive alpha in the five-factor model of Fama and French
(2015). Internet Appendix D then shows, using the “factor zoo” test developed by Feng,
Giglio, and Xiu (2020), that our risk factor provides a significant contribution in pricing

the cross-section relative to a high-dimensional set of existing factors.

D.  Multi-Horizon Returns Test

We next test the duration factor’s ability to price returns at multiple horizons using the
multi-horizon returns (MHR) misspecification test proposed by Chernov, Lochstoer, and
Lundeby (CLL, 2022). CLL construct a moment condition for use in a GMM overidentifica-
tion test based on the fact that a correctly specified model must price not only one-period
returns, but also cumulated multi-horizon returns. They test a given model’s ability to
price its own factors’ returns at multiple horizons, which “allows for testing most, if not all,
aspects of conditional model misspecification” (p. 1311). In order to compare models on
common ground, they also consider a common set of test assets, namely the multi-horizon
returns for the Fama and French (2015) five (FF5) factors. We consider both versions of
the MHR test in Table 5.2

The first entry in the first row of Table 5 shows that the GMM J-statistic for our three-
factor model has a p-value of roughly 0.06 when tested to match its own factors’ returns at
multiple horizons (1, 3, 6, 12, 24, and 48 months, as in CLL). It is thus not rejected at the
5% level, though it would be rejected at the 10% level. This performance is nonetheless
on par with or stronger than all leading recent factor models considered by CLL, including
the Carhart (1997) four-factor model (p = 0.07), a Mkt + BAB model (p = 0.06), the
Hou, Xue, and Zhang (2015) g-factor model (p = 0.02), and the FF5 model (p = 0.02);
see their Table 1.2 Our model’s outperformance in capturing conditional factor dynamics,
and thus in pricing multi-horizon returns, is even more strongly apparent in the second
column: its p-value when tested against the multi-horizon FF5 returns is roughly 0.62,
whereas all leading models they consider — including FF5 itself — are rejected at the 5%
level in this test conducted on common ground (p = 0.00 for the Carhart model, p = 0.00
for Mkt + BAB and for the CAPM, p = 0.04 for the ¢-factor model, and p = 0.02 for FF5,

25We thank the authors for helpful discussions.
26The only model they consider that is not rejected at the 10% level is the CAPM (p = 0.191), as the

market appears to capture its own conditional dynamics reasonably well.
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as in their Table A5).?" The three-factor model thus performs relatively well at explaining
returns at longer horizons. As discussed by CLL, this ability to price MHR suggests that
the duration factor model provides a parsimonious but accurate summary of conditional

factor dynamics for the major risk factors.?®

E.  Summary

Sections I and III show that the major equity risk factors invest in short-duration
stocks and can largely be summarized by a duration factor that invests in firms with short
cash-flow duration. However, it is unclear whether the premium on the duration factor
arises as a product of the short cash-flow duration of the firms in the factor or if it arises
from other characteristics associated with these firms. In the next section, we address this
issue by leveraging a novel dataset of single-stock dividend futures that allows us to identify

the effect of cash-flow duration on the expected returns.

IV. Identification from Dividend Strips

In this section, we identify the effect of cash-flow duration on stock returns using a
novel dataset of single-stock dividend futures. The starting point for this analysis is the
following identity from the law of one price that links the CAPM alphas on individual firms
to CAPM alphas on individual cash flows:

ai =Y wi"al" (7

m=1

where a} is the CAPM alpha on firm 4, ai’m is the CAPM alpha on the ¢ + m cash flow of

firm ¢, and w;™ is the cash flow’s relative present value.

2"The remaining rows of Table 5, compared against the results provided in CLL (2022), show that our
model also performs well on mean absolute pricing errors and the maximal information ratio for multi-
horizon returns, with a comparable maximal Sharpe ratio to those of other leading models.

28 A non-rejection in the MHR test requires that the ratio of the expected factor return to its second
moment is roughly constant over horizons. One possible explanation for these results, therefore, is that by
combining many characteristics into one, our factor essentially extracts the more stable component of the

premia associated with these factors, thereby allowing it to price long-horizon returns more robustly.
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Equation (7) shows that firm-level differences in CAPM alphas can arise from two
sources: alphas on individual cash flows may vary with the maturity of the cash flows
(m) for a given firm, or they may vary across firms (¢) for all maturities (or both). Our
hypothesis is that CAPM alphas decrease with the maturity m of the cash flows. Such
a pattern would generate relatively high CAPM alphas for short-duration firms because
they have relatively large weights on near-future cash flows. Under this hypothesis, we say
that the timing of cash-flows affects firm-level alphas: the decomposition in (7) implies
that changing the weights on the individual cash flows, while holding fixed the alphas on
individual cash flows, would lead to a change in the firm-level alpha whenever cash flow-level
alphas decrease in maturity.?’

The alternative hypothesis is that CAPM alphas on individual cash flows do not vary
with maturity but instead vary across firms. For instance, the characteristics underlying our
duration sorts could proxy for firm-level differences in riskiness that cause CAPM alphas
on all individual cash flows to vary across firms. In this case, cash-flow duration might be
correlated with firm-level CAPM alpha, but changing the weight on the individual cash
flows, holding fixed the individual alphas, would not affect firm-level alpha.

We can thus identify the effect of cash-flow duration on firm-level alpha by studying
the CAPM alphas on individual cash flows for individual firms. To do so, we turn to a
novel dataset on single-stock dividend futures. We first describe the data, then describe

our estimation strategy, and finally present and discuss our empirical results.

A.  An Introduction to Single-Stock Dividend Futures

Single-stock dividend futures are claims to individual dividends on individual firms.
For instance, the future on the 2021 dividend for Nestlé gives the buyer the right to the
dividends paid by Nestlé during the 2021 calendar year. As such, these assets allow us to

29Holding fixed the alphas on the individual cash flows amounts to holding fixed the riskiness of the
individual cash flows. One could imagine, for example, a change to the expected growth rate of a firm’s
cash flows while keeping their riskiness (i.e., stochastic discount factor covariances) constant. By contrast,
counterfactuals in which one changes cash-flow timing while also changing the riskiness of the individual
cash flows would not necessarily change firm-level alphas. Consider, for example, a case in which a firm
starts allowing customers to make delayed payments (with interest), with all accounts settled and dividends
paid out only in even years. This affects cash-flow weights and thus duration, but the riskiness of the
individual cash flows would also change, and our hypothesis would not in general predict a change in alpha

from such an accounting-induced change in duration. We thank a referee for suggesting this example.
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study the prices and returns on individual dividends for individual firms.

The single-stock dividend futures have traded as dividend swaps in an over-the-counter
market since the early 2000s (Manley and Mueller-Glissmann, 2008). Starting in 2010,
single-stock dividend futures have traded as a standardized product on the Eurex Exchange.
Eurex initially offered dividend futures on 50 firms but as of 2020 offers futures on more
than 200 firms. The availability of maturities varies across firms, with the most liquid firms
having maturities as far as 7 years.

The single-stock dividend futures are similar in nature to the index dividend futures
that have become commonly used in asset pricing.?’ The index dividend futures are claims
to the dividends on an underlying index, such as the S&P 500 or Euro Stoxx 50. The
market for single-stock dividend strips is roughly of the same order of magnitude as the
market for Euro Stoxx 50 dividend strips, which also trade on the Eurex Exchange.®!

Despite being an exchange traded product, the market for single-stock dividend strips
continues to exhibit some of the features of over-the-counter markets. Indeed, most of
trading in the single-stock futures market are over-the-counter trades that are subsequently
brought onto the order book through the Eurex OTC trading facilities for risk clearing
purposes. As such, prices can be stale, as discussed shortly, and bid-ask quotes from the
order book are unlikely to be a good measure of actual prices. Throughout the analysis,
we keep these features of the market in mind.

As explained in Section [.B, we obtain daily data from Eurex through Deutsche Borse.
The data reflect volume from the OTC trading facilities as well as the usual on-the-book
trades. We observe daily volume, open interest, and settlement prices. The settlement
prices are the end-of-day prices that positions are cleared against in the risk management
systems. The prices are either based on traded prices or on a combination of quotes and
proprietary models. To ensure that our prices are based on traded prices, we keep track of
prices in calendar time and ensure only to update prices on days where we see volume in
the market.

To give a sense of the data, Figure 6 plots the price, open-interest, and daily volume
for the futures on the 2020 dividends of AXA and Deutsche Bank. The AXA futures are

some of the most liquid in our sample whereas Deutsche Bank are some of the least liquid.

30See Binsbergen, Hueskes, Koijen, and Vrugt (2013) for an introduction to index dividend futures.

31Euro Stoxx 50 dividend futures had a notional outstanding of around €12 billion as of mid-2018
(Gormsen and Koijen, 2020). By comparison, we observe a total notional in the single-stock market of
around €4 billion at this point. Both markets have around 20,000 contracts traded daily, although the

single-stock dividend futures generally trade at 1/10 the price of the index dividends.
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As shown in the left part of the Figure, the AXA future trades fairly frequently and does
not exhibit any dramatic swings over the sample. We also note that there is no sign of
a bid-ask bounce.*> The open interest increases over time, reflecting the growing nature
of the market. As shown in the right side of the figure, the Deutsche Bank future trades
more rarely, with trades sometimes being several months apart. This makes the claim on
Deutsche Bank ill-suited for high-frequency analysis like event studies, but the stale prices
are less of an issue when considering annual returns, as we do in the subsequent sections.
We will nonetheless keep the issue of stale prices in the illiquid contracts in mind through
the rest of the analysis and ensure that results are not driven by the pricing of the least

liquid strips.

B.  Summary Statistics and Representativeness

Table 6 shows summary statistics for the dividend futures. Panel A reports statistics
on annual returns, volume, open interest, and notional outstanding. We calculate annual
returns at the end of December each year (as the contracts mature at the end of December)
as explained in Appendix B (Section B.C). The average raw returns are around 5%, and
average log returns are around 3.4%. These are futures returns, which means they are in
excess of the risk-free rate. The average annual volume is 11,864 contracts and the average
open interest is 5,444 contracts. A contract is a claim to the dividends paid out on 1,000
shares and trades on average at around €2,000. The average notional outstanding is around
€4 million. The total value of all the notional outstanding is around €4 billion at the end
of the sample.

Panel B shows summary statistics as they relate to maturity and CAPM betas. The
average maturity is 2 years. The average CAPM beta for an individual strip is 0.51. We
estimate CAPM betas in regressions of monthly returns on the monthly returns of the
market portfolio in the country of incorporation of the underlying firm, accounting for
stale prices; see Appendix B (Section B.D) for detail. We trim the betas to be between -1
and 1.5.%3

Panel C addresses the representativeness of the sample. The panel reports the average
characteristics of the firms underlying the strips. We measure the characteristics in cross-

sectional percent of the characteristics on the full universe of firms in the country where the

32In tests using all strips, we find no significant evidence that returns on the strips are autocorrelated.
33For robustness, Tables A10-A12 show results using betas that are instead winsorized by maturity at

the 5% level.
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firm is traded, meaning that the degree of non-representativeness can be roughly measured
using the difference of the average value of each characteristic from 50. Although the
sample contains firms with cash-flow duration below average, the sample is generally fairly
representative. The main dimension along which it is not representative is market size, as
the sample generally contains only the largest firms in the universe of firms.

Finally, Figure A2 in the Internet Appendix shows a histogram of monthly returns.
The figures excludes all observations where returns are equal to zero. Returns look fairly

symmetric but have negative skewness and exhibit excess kurtosis.

C. Ezxpected Returns and CAPM Alphas

We begin our analysis of the dividend strips by analyzing the expected return and
alphas. For this purpose, we use expected dividends from IBES to estimate the expected

yield-to-maturity on a given claim. That is, we calculate expected returns and alphas as:

. 1/m
| E[Di..
Eyfriim] = (%) -1 (8)

t

where Dy, is the analysts’ time-¢ expectations of the dividends paid out at t + m on
firm ¢ and ftl "™ is the price of the m-maturity strip on firm 4 at time ¢. See Appendix B
(Section B.C) for details. We note that a cleaner way to map the results on the dividend
futures to the cross-section of stock returns would be to look at expected one-period returns
instead of the expected yield-to-maturity. When looking at expectations, the data does not
allow us to study one-period returns as we do not observe next-period expected prices.
However, in the next section we study realized returns, which do allow us to study one-
period returns.

We further calculate expected CAPM alphas by subtracting the product of the CAPM
beta and the expected market risk premium from the expected returns, assuming a market

risk premium of 5%:

a?m = Et[TZinm] - ﬁZ;LTcrLLturity x 5%. (9)
where 67ifgtmty is the beta-to-maturity. The estimation of the strip-level betas are outlined

in Appendix B (Section B.D).

As a first look at the data, Table 7 reports the average CAPM alphas for dividend
strips on long- and short-maturity firms. The first row shows the average CAPM alphas
of the strips on the short-duration firms. The alpha starts at 8% per year for the one-year
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claim and decreases steadily to around 4% for the four-year claim. The row below shows
the alphas of the strips on the long-duration firms. Here, the alpha starts at around 9%
for the one-year claim and decreases to around 3.5% for the four-year claim. The alphas
are thus decreasing in the maturity of cash flows even when keeping the underlying firms
constant. In addition, the alphas on the cash flows do not appear higher for short-duration
firms than for long-duration firms.

The analysis in Table 7 is a powerful way of separating between our duration-driven
hypothesis and other potential drivers of the premium on short-duration firms. Indeed,
when going from left to right in Table 7, we are keeping all of the firm-level characteristics
fixed, and varying only the maturity, or duration, of the cash flows. Similarly, when going
from top to bottom, we are varying all of the firm-level characteristics, but keeping the
duration of the cash flows constant. This analysis reveals that it is duration, and not other
firm-level characteristics, that drives returns.

We do a more rigorous analysis of dividend strips in Table 8. The table shows the

results of the following end-of-year panel regressions:
Yittm = 02D + by DY + by DY + BIX]™ + By X[ + ¢, (10)

where yfﬁm = F, [riﬁm] or yzﬁm = aiﬁm, Dy to Dy are maturity dummies for the claims,
X™ is a vector of time t strip-level characteristics, and X/ is a vector of time ¢ firm-level
characteristics. Time ¢ is end of December of a given year. One of the right-hand side
characteristics is duration, which we scale by its cross-sectional standard deviation for ease
of interpretation.

The leftmost regression in table has expected returns on the left hand side and on the
right hand side it has the the CAPM beta of the strip, the CAPM beta of the underlying
firm, and the cash-flow duration of the underlying firm. We find a positive relation between
expected returns and both the beta of the strip and the beta of the underlying firm. This
finding suggest that betas are priced in the dividend strips and that there is a link between
pricing of strips and the risk of the underlying firm. We find no relation between the cash-
flow duration of the underlying firm and the expected returns. The regressions control for
date and currency fixed effects.*® We cluster standard errors by date and firm.

The next regression instead has the maturity dummies on the right hand side. We find
a slightly negative relation between maturity and dummies, in the sense that the loading

on the dummies are negative, and increasingly so, for the 3- and 4-year claim. The effect is

34The contracts are traded in the currency in which the dividends are paid out.
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significant for the 4-year claim. Column 3 augments the regression with the CAPM betas.
Doing so intensifies the negative relation between return and maturity, such that the effect
is significant both for the 2-year and 3-year claim. This result reflects the notion that
CAPM betas increase in maturity, as shown in the rightmost columns of the table.

The fourth and fifth columns of Table 8 has CAPM alpha on the left hand side. The
CAPM alphas load negatively on the maturity dummies, and increasingly so, suggesting a
negative relation between maturity and alpha on the strips. We again find no effect of cash-
flow duration of the underlying firm. The results are robust to use notional outstanding as
weight, which ensures that the results are not driven by the less liquid strips. In Internet
Appendix Table A3, we further study the effects of liquidity by including liquidity measures
such as volume and open interest on the right hand side of our regressions. Doing so has no
impact on the results, further suggesting that the results are not driven by liquidity issues
related to the dividend strips.

The final column has CAPM betas on the left hand side, finding that betas indeed
increase in maturity and that the beta of the individual strip is related to the beta of the
underlying firm on the stock exchange. The fact that the CAPM beta of the underlying
firm is significantly related to the beta and expected return on the firm’s dividend strips
is important because it alleviates concerns about potential segmentation between the two
markets.

The analysis in Table 7 and 8 essentially decomposes the alpha of the dividend strips
into the part that can be explained by maturity and the part that can be explained by
duration characteristics. However, alphas could vary across firms even after controlling for
duration. Table A4 in the Internet Appendix includes firm fixed effect in the regressions to
address this possibility. The fixed effects indeed increase the R?, suggesting there could be
firm-level effects on the strips. Importantly, however, there do not appear to be firm-level
differences along the duration-characteristic and controlling for these differences with fixed

effects do not influence the results on the maturity dimension.

D. Realized Returns and Alphas

Looking at expected as opposed to realized returns bring additional power to our tests
but it also leaves open the possibility that analysts’ expectations are biased. We therefore
also look at realized returns. At the end of each year, we calculate the realized returns
from buying a contract and selling it one year later. If the contract has matured upon
selling, we use the settlement price as the selling price. For CAPM alphas, we calculate

realized alphas as the difference between realized returns and the product of the beta
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and the realized return on the market where the firm is incorporated. See Appendix B
(Section B.C) for details.

We start by projecting the realized returns onto the ex ante expected returns. Table 9
Panel A shows the results. Without regression weights, the slope coefficients are between
0.68 and 0.80, depending on the choice of fixed effects and type of return. We generally
cannot reject that the slope coefficients are equal to 1 in the equal-weighted regressions.

We next project the realized returns onto the maturity dummies from the panel regres-
sion above. These regressions include firm fixed-effects as we have no firm-level character-
istics on the right-hand side. The first two regressions in Panel B have realized returns on
the left hand side. We find a largely flat effect between returns and maturity. We next
project the realized alphas onto the dummies. Here we find a negative relation between
alpha and maturity. The coefficients are larger than the ones from the expected alphas,
but the significance is substantially weaker given the noise inherent in looking at realized
returns. We cluster by date and firm, or alternatively by date and strip (i.e., date and
firmxmaturity). Clustering at the higher (date and firm) level is more conservative, and
yields slightly less-significant results than clustering by date and strip.

Panel C replaces the firm fixed effects with the cash-flow maturity of the underlying
firm on the right hand side. The results reveal a positive relation between realized alphas
and duration characteristics, which mean that longer cash-flow duration of the underlying
firm corresponds to lower returns. The effect is marginally significant in one specification.
These results contrast to the results on expected returns, where there we found no relation
between returns and duration. The discrepancy might reflect noise or it might reflect
overoptimistic beliefs. In either case, it suggests that realized returns have been lower than
expected for long-duration firms.

Panel D highlights this finding by taking the difference between realized and expected
returns on the left hand side. We find no relation between these expectations errors and
the maturity dummies. But we do find a negative relation between the expectations er-
rors and the cash-flow duration, again emphasizing that beliefs in this sample have been
overoptimistic. The findings on realized returns suggests that overoptimistic expectations
about growth rates of long-duration firms could play a role in explaining the returns on the
duration factor. We explore this explanation more in Section V. However, we note that an
overreaction explanation cannot easily account for the negative relation between cash-flow
maturity and both realized and expected alphas.

In conclusion, the dividend strips reveal a negative relation between the maturity of the
strips and the risk-adjusted return. These results suggest that cash-flow duration play a

role in the returns associated with the major risk factors.

26



E.  Alpha Accounting

The above analysis identifies a relation between cash-flow duration and stock returns.
We next explore whether cash-flow duration quantitatively can explain the return on the
duration factor. To asses the quantitative effects, we need the full term structure of CAPM
alphas for dividend strips. As we only observe prices of dividend strips for the first few
years, we specify a functional form for the term structure and calibrate it such that it
is consistent with the dividend strips we observe and such that the market has a CAPM
alpha of zero. We then analyze whether such a term structure can generate a meaningful
difference in the expected returns between long- and short-duration firms.

We specify that CAPM alphas on dividend strips of maturity m follow

a™ = Ko — K1 1n (m) (11)
and set ko = 9%. We chose x; such that the market portfolio has a CAPM alpha of zero.
To do so, we must take a stand on how the weights on future cash flows develop for the

market portfolio. We assume that the weight on the m-th period cash-flow is

W — G if)m = (0.97)™ (12)

which results in a cash-flow duration of 33.33 years.>> We then chose ; such that

o0

> (0.97m X (Ko — Ky ln(m))> =0 (13)

m=1
Figure 7 plots the resulting term structure of CAPM alphas for the first 100 years. The

term structure starts at 9% by assumption and reaches -5.5% for the 100-year claim.

We next study the CAPM alphas to a long- and a short-duration firm. For the short-
duration firm, we assume that the ratio of growth rates to discount rates is 0.94, which
results in a duration of approximately 16 years. For the long-duration firm, we assume a
ratio of 0.985, which results in a duration of approximately 66 years.

Table 10 shows average CAPM alphas and weights for different parts of the term struc-
ture in this exercise. The first row shows that the average CAPM alpha for the 1- to 20-year

35In calculating duration, we approximate the weights w™ by the weights w™. As explained in section
I.E, these two are slightly different because the weights for duration, w™, are based on present values that

are calculated based on the yields whereas w™ are the weights based on the actual present values.
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claims is around 2.8% per year. From there it decreases as shown in Figure 7. The table
also reports the average weights the market portfolio puts on different parts of the term
structure. More importantly, it shows the average weights that long- and short-duration
firms puts on different parts of the term structure and the resulting CAPM alphas.

The CAPM alpha on the short-duration firm is 2.11% per year and the CAPM alpha
on the long-duration firms is -2.27% per year. These results compare well to the results
on the large-cap firms portfolios in Table 3. The large-cap short-duration portfolio has an
annual alpha of around 2% and the long-duration portfolio has a CAPM alpha of around
-2.9%. As such, the effect of cash-flow duration is quantitatively large enough to explain
most of the CAPM alpha of large-cap firms in this example (we cannot easily evaluate the
CAPM alpha of small-cap firms as these do not have dividend futures traded on them).

The above is a reduced-form approach meant to illustrate the quantitative effects of
cash-flow duration. A more rigorous approach would be to specify a flexible functional
form for the data generating process and the pricing kernel, estimate these, and calculate
implied prices of dividend strips as in Hansen, Heaton, and Li (2008). In this context, one
can discipline the model by forcing it to price the dividend futures we observe. We consider

this approach an interesting avenue for future research.

. Relation to the Results on Index-Level Dividends

Binsbergen and Koijen (2017) study the pricing of index-level dividends and find a
negative relation between maturity of dividends and risk-adjusted returns. These results
are consistent with ours but it is important to emphasize that the negative relation be-
tween maturity and CAPM alphas on index-level dividends does not necessarily imply a
similar effect on the firm level. The reason is that the composition of the index varies
with the maturity. By construction, the near-future index has a relatively large weight
on short-duration firms and the distant-future dividends have a relatively large weight on
long-duration firms.*® Accordingly, when comparing near- and distant-future dividends on
the market portfolio, one is effectively comparing cash-flows on long- and short-duration
firms. As discussed above, these cash flows may have different returns because of cash-flow
duration or because of other differences in the characteristics of long- and short-duration
firms, something we cannot separate between without the single-stock dividend futures.

In addition, the index-level dividends naturally cannot speak to whether or not there are

36This effect can be large. In the example in Section IV.E, long-duration firms have twice as large a

weight in the market portfolio as in the near-future dividends.
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firm-level differences in the alpha on the individual cash flows.

G.  Robustness Analysis from Corporate Bonds

We perform a similar exercise using the corporate bonds described in Section I.C. At
time t, we sort all firms for which we have bonds into two groups based on firm-level
characteristics at time ¢. We then sort corporate bonds issued by these firms into portfolios
based on maturity and study their performance.

Table 11 shows the CAPM alphas for bond portfolios sorted on firm-level characteristics
and maturity. The CAPM alpha is the intercept in a regression of equal-weighted excess
returns of the portfolio’s bonds on the market. We measure excess returns as returns in
excess of the return on a Treasury with the same maturity.

Panel A considers portfolios sorted on the duration characteristics and maturity. For
both long- and short-duration firms, the alpha decreases in maturity. In addition, the
alpha does not vary across the duration characteristic. These results again suggest that the
maturity of the cash flows, not firm-level characteristics, are the main driver of risk-adjusted
returns. We find similar results for the other characteristics. Figure A3 shows t-statistics
for portfolios sorted on the other firm-level characteristics. None of these characteristics
predict differences in the bonds” CAPM alphas, but for all sorts, the alphas decrease in the
maturity of the claim.

Our corporate bond analysis is intended as a robustness check for our results on dividend
strips. We note, however, that the consistency of these two sets of results suggests a

promising avenue for unifying the cross-section of equity and debt in a parsimonious way.

V. Economic Mechanisms

The previous section identifies an effect of cash-flow timing on equity returns. It shows
that part of the alpha on our duration factor must come from the fact that near-future
cash flows have high CAPM alphas. In Section V.A below, we analyze potential economic
drivers of such a premium on near-future cash flows. In Section V.B, we address alternative
economic drivers of the duration factors that are unrelated to the timing of cash flows.

Finally, in Section V.C, we relate our results to the investment CAPM.

A.  Duration-Driven Returns through Consumption Risk

The results on dividend futures, and the duration factor in general, are conceptually

consistent with a simple framework that features a consumption, or cash flow, risk factor
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and a discount rate risk factor, where the former has a high premium and the latter has a
low premium, as in Campbell and Vuolteenaho (2004).

To see how, consider the extreme case where only consumption-risk is priced. If con-
sumption risk is constant over the term structure, all claims will have largely similar ex-
pected returns, as we indeed find in Table 3, 7, and 8. If, at the same time, discount rate
risk increases in horizon, betas will increase in maturity, as is observed empirically. How-
ever, if this discount rate risk is unpriced, it will not increase expected returns and CAPM
alphas will therefore decrease in maturity. In Internet Appendix C, we study a model with
some of these dynamics based on Lettau and Wachter (2007), which shows that the major
risk factors indeed are priced in such a setting.

The key for the above dynamics is that there is more consumption risk per unit of beta
in the near-future claims than in the distant-future claims. We test whether this is the case
by studying consumption risk in the 10 duration-sorted portfolios in Table 2.

Figure 8 Panel A plots the covariance between future consumption and quarterly returns
net of the market exposure of the given portfolio. We consider two-year as opposed to
quarterly consumption to allow for lags in the consumption response to bad news.?” The
figure shows a higher exposure to consumption risk for short-duration portfolios than for
long-duration portfolios. More precisely, when short-duration firms under-perform relative
to their market exposure, consumption tend to decrease over the next two years and vice
versa for long-duration firms. The negative consumption beta for the long-short portfolio
is statistically significant. The economic significance is more difficult to evaluate without a
structural model, but we note that the covariances are modest. If we consider covariance
with dividends instead of consumption, the covariances are more than ten times as large,
suggesting larger economic significance.

Panel B shows that consumption risk of raw returns on duration-sorted portfolios is
more or less constant across duration. This finding is consistent with the fact that we
find very limited variation in expected returns across duration-sorted portfolios. Panel C
shows the relation between realized returns and the future two-year returns on the market
portfolio. With some simplification, this relation captures how exposed a given portfolio
is to changes in expected returns and thus to discount rate risk; a more negative loading
suggests a higher exposure to discount rate risk. As expected, long-duration firms appear
more exposed to changes in expected returns, though the effect is imprecisely estimated.
This discount rate risk may partly explain why long-duration firms have high CAPM betas,

as realized market returns mostly reflect discount rate risk (Cochrane, 2011).

37In addition, contemporaneous consumption is essentially uncorrelated with returns in this exercise.
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In conclusion, the evidence in Figure 8 is consistent with consumption risk and dis-
count rate risk playing a role in the alpha on our duration factor and on the dividend
strips more generally. We note, however, that other forces such as horizon-dependent
risk aversion (Eisenbach and Schmalz, 2016; Lazarus, 2019) or institutional features (Belo,

Collin-Dufresne, and Goldstein, 2015) also might play a role.

B. Alternative Drivers of the Duration Factor

The return on our duration factor are at least partly driven by the premium on near-
future future cash flows, and the above discusses how that premium can arise. However, as
discussed earlier, the duration factor can in principle also arise from firm-level differences in
returns. One option is that there are firm-level differences in expected returns on individual
cash flows, but the evidence in Table 7 suggests that this is unlikely. The expected CAPM
alpha is almost the same for long- and short-duration firms, and if anything, long-duration
firms have higher expected CAPM alphas than short-duration firms. These findings suggest
that rational explanations of the duration factor have to revolve around a premium on near-
future cash flows.

However, another option is that there are differences in unexpected returns across div-
idend strips, as implied by certain behavioral theories. In particular, La Porta (1996) and
Bordalo, Gennaioli, La Porta, and Shleifer (2019) argue that high-growth firms have low
realized returns because investors overestimate the expected growth rates. This theory
predicts that there are no firm-level differences in expected alpha on dividend strips, as is
the case empirically. However, the theory also predicts that, going forward, high-growth
firms have lower realized growth than expected, leading to low realized returns on these
firms. As reported in Table 9 Panel C, we indeed find that long-duration firms have lower
realized returns than short-duration firms, suggesting that this theory has some validity.
The statistical significance is very marginal, with p-values only going below 10 percent in
one specification where we weight by notional and consider log-alphas. In this sense, our
data do not allows us to say that diagnostic expectations influence returns with very high
levels of confidence. At the same time, we cannot rule out that overreaction plays a role
for the duration factor.

It is important to emphasize that the behavioral explanation from La Porta (1996) and
Bordalo, Gennaioli, La Porta, and Shleifer (2019) cannot explain the finding that alphas
decrease in maturity of the cash flows. This would require a theory of maturity- rather firm-
dependent expectations errors, such that proposed by Cassella, Golez, Gulen, and Kelly
(2021). As shown in Table 9 Panel D, we do not find significant evidence that investors
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make horizon-dependent forecast errors in this sample.

C. The Link to Production-Based Asset Pricing

Our duration-based framework is related to the production-based model (Cochrane,
1991, 1996) and the investment CAPM (Zhang, 2005; Hou, Xue, and Zhang, 2015; Hou,
Mo, Xue, and Zhang, 2020). These papers study stock returns from the perspective of
corporations, building on the idea that corporate investment responds to discount rates
from financial markets. In particular, the first principle of investment implies that firms
with higher profit and lower investment must have higher discount rates to prevent them
from investing more, a prediction that is strongly supported by the data. This is essentially
a supply-side approach, focusing on how the supply of capital, or cash flows, ensures that
the law of one price holds.

Our approach instead takes the supply of cash flows as given and focuses on the demand
side, namely how investors price these cash flows. In our framework, the relevant firm-level
information is summarized by the timing of its expected cash flows, so it is sufficient to treat
firms essentially as machines generating cash flows with different duration. One advantage
of this approach is that it is more easily mapped to pricing dynamics in traditional exchange
economies (Lucas, 1978). However, it is also somewhat more restrictive, as it only focuses
on discount rate variation coming from one dimension, whereas the production CAPM can
reflect discount rate variation coming from many different dimensions at once. The fact
that both approaches produce similar fundamental predictions are reassuring and suggests

that the two may be able to be combined into a common framework.

VI. Conclusion

We study the economics of the major equity risk factors in asset pricing. Across a
broad global sample of 23 countries, risk factors based on value, profit, investment, low-
risk and payout invest in firms with low growth rates. This common feature is sufficiently
pronounced that the risk factors can be summarized by a single factor that invests in low-
growth firms. We refer to our new factor as a duration factor. We do so because the
firms in the long-leg of the factor not only have low growth rates but also a short cash-flow
duration.

We document that cash-flow duration is an important determinant of the premium on
short-duration firms. Using a new dataset of single-stock dividend strips, we find that

expected and realized CAPM alphas decrease in the maturity of cash flows for individual
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firms, implying a direct link between duration and CAPM alphas. At the same time,
the firm-level duration characteristic does not explain the expected CAPM alphas on the
individual strips, suggesting that the duration characteristic only predicts expected CAPM
alphas because it predicts the duration of cash flows.

Our results thus bring identification to a large literature on the role of cash-flow duration
in stock returns. Lettau and Wachter (2007), for example, suggest a model in which value
firms have high returns because they load more on near-future cash flows, which have a
high alpha. But it is not ex ante obvious that it is the timing of cash flows — rather than
other firm-level characteristics — that generates the premium on value firms. Our data
allows us to control for firm-level characteristics and study the effect of maturity within
a given firm. Doing so, we provide direct evidence for the role of duration not only for
understanding the value premium, but also for understanding profit, investment, low-risk,
and payout premia.

Having identified an effect of duration on returns, the next question is whether the
effect is strong enough to fully explain the premium on the duration factor. We only
observe dividend strips for a subset of the future dividends, meaning we cannot provide a
model-free answer to this question. However, we show that under reasonable assumptions
about the term structure of CAPM alphas and the duration of cash flows, the effect of
duration is indeed large enough to explain the premium on the duration factor.

We also provide suggestive evidence on why near-future cash flows have high CAPM
alphas. A large literature discusses this question (see Binsbergen and Koijen, 2017, for
review). A common explanation is that near-future cash flows are more exposed to cash-
flow risk, potentially due to mean-reversion in growth rates, as in the Lettau and Wacther
(2007). Consistent with such theories, we indeed find that our duration factor is exposed
to consumption risk in that low abnormal returns on our factor are associated with lower
consumption over the subsequent two years.

However, we cannot reject that irrational expectations also play a role for the returns
to our duration factor. While there are no differences across firms in expected return and
CAPM alpha by cash-flow maturity, the realized return and alpha on individual cash flows
do vary across firms. In particular, long-duration firms have lower realized returns than
short-duration firms. This finding is consistent with a theory of overreaction, where the
high growth rates on long-duration firms make investors overestimate the expected growth
and thereby subsequently be disappointed. The statistical significance for this finding,
however, is very marginal. In addition, this behavioral explanation cannot account for the
maturity dimension of CAPM alphas, which exists both in expected and realized returns.

Going forward, we hope that our dataset of single-stock dividend futures can be used
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to test and discipline new theories of the cross-section of stock returns. Almost any model
of the cross-section of stock returns will have implications for the expected returns on
individual cash flows, implications that can be tested directly in our data. As such, the

data could be useful for our continued understanding of the cross-section.
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Appendix A. Detail on Data and Estimation

A.  Measuring Realized Growth Rates

We calculate realized dividend growth rates for characteristic-sorted portfolios following
Chen (2017). Each June, we construct portfolio breakpoints based on the most recent
characteristics. We then calculate value-weighted portfolio weights for the subsequent 180
months. Using these weights, we calculate sans and cum dividend returns of the portfolio in
each month. Using the sans dividend return, we calculate how the value of a $1 investment
in each portfolio develops over time, including delisting returns. Using the value of the
portfolio, and the difference between the cum and sans dividend return, we calculate the
monthly dividends to the portfolio.

More precisely, the value at time ¢ + s of the portfolio formed at period ¢ is given by:

V;t:-s = %Z—s—l(l =+ T€t$§+s) (A1>

where retz}, , is the sans dividend return between period t +s—1 and ¢+ s to the portfolio
formed at time ¢. The dividends in period t + s of the portfolio formed at period ¢ is then
given by:

Dzl‘?—i-s = Viﬁ-s—l(reti—ks - Tet‘ri—i-s) (A2>

where rety, , is the cum dividend return between period ¢ + s — 1 and ¢ + s to the portfolio
formed at time t.

For each formation period, we calculate the average dividends per $100 initial investment
in each year after formation until year 15. To calculate the dividend growth rate, we
calculate the average dividends per year after formation across the different formation
periods, and finally calculate dividend growth rates as the growth in the average dividends
over the 15 years after formation.

For earnings growth, we again use the methodology developed in Chen (2017). To
mitigate the fact that earnings are volatile, we average earnings over three years before
calculating growth rates. In particular, to calculate 15-year growth rates, we compare the
average earnings in year 13, 14, and 15 after formation to the average earnings in the year

after formation, the year of formation, and the year prior to formation.
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B. Definition of Equity Characteristics

We define the book-to-market, profit, and investment characteristics following Fama
and French (2015). We use the beta characteristic from Frazzini and Pedersen (2014). We
follow Asness, Frazzini, and Pedersen (2019) and define payout as the total payout over
the last five years divided by total profits over the last five years. Here, payout is measured
as net income minus change in book equity from the year before, and total income is sales

minus cost of goods sold.

C.  Sample Periods

We work with three different sample periods in the US depending on data availability.
Whenever we need IBES data, the sample starts in 1981. When doing cross-sectional factor
analysis, the sample starts in 1963 because that is when the Fama and French five-factor
model becomes available. Finally, when studying the duration characteristic, the sample
starts in 1929 because this is when the first variable needed to construct the characteristic

becomes available (market beta).

Appendix B. Details on Single-Stock Dividend Strips

A.  Matching and Cleaning

We obtain data on single-stock dividend futures directly from the Eurex Exchange.
The strips are organized by product ID. Each product ID is associated with an underlying
ISIN, which is the asset that keeps track of the dividend points for the given firm. Each
product ID is also associated with a firm ISIN, which is the firm that the underlying ISIN
is associated with. Finally, each contract is also associated with a currency, a contract
size,*® and a minimum price change. At each point in time, a firm can be associated with
multiple product IDs.

We first match the firm underlying each product ID to a GVKEY in Compustat using
ISIN. In the case that product ID is associated with multiple GVKEYS, we use the first
issuance number in Compustat. We then aggregate contracts across GVKEY'S such that at
each point in time ¢, we have only one firm (i) x maturity (m) observation. We aggregate

notional outstanding and volume across contracts. Only in three cases do we observe a

38 Almost all contracts are for a 1,000 contracts of the underlying, i.e. 1000 shares, but it varies for some

of the contracts.
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firm that has multiple dividend claims of a given maturity traded at different prices. In
two of the cases, this happens because the underlying index (the asset that keeps track
of the dividends) is different. The dividend indexes are apparently different because of
spin-offs.®” In all three cases, the prices are fairly close, so we simply value-weight across
the claims. Regarding currencies, the Vodafone claim has both a euro and a pound version,
but since the euro version has no open interest, we simply discard it from our dataset. We
also discard all observations without any open interest, which is a substantial amount. The

resulting dataset has 599,125 observations of unique day xfirm xmaturity observations.

B. Prices

We observe the daily end-of-day settlement prices on Eurex Exchange. These are prices
that the outstanding contracts are settled against in the risk management systems. These
reflect a combination of traded prices, quotes, and proprietary models. The settlement
prices are sometimes updated without there being any trading. We complement these
settlement prices with a time series of traded prices that we construct ourselves. For each
claim, we create a traded price which we keep track of in calendar time and update to the
new settlement price only on days where we observe traded volume for the particular claim.

Our main returns are based on our traded prices, but we note that in some cases,
settlement prices are likely more useful. For instance, Deutsche Bank announced a dividend
ban in July of 2019. Naturally, there was no trading in the 2020 claim following the ban,
as the contracts were worthless, which means that traded prices stay at the pre-ban level.

Settlement prices, however, were adjusted by Eurex to 0.

C. Calculating Returns

C.1. Realized Returns and Alphas

We calculate realized annual returns by looking at the one-year change in prices. At
the end of each December, we calculate the realized returns over the next year as
1
,m ftl—i—n}

T = w1 (B.1)
¢

39We conjecture that one of the index includes the dividends associated with the company subject to

the spin off.
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We use traded prices as the time-t prices. We also use traded prices as the time ¢+ 1 prices
unless the contract matures at ¢ 4+ 1, in which case we use settlement prices. Note that
these are futures returns, meaning they are measured in excess of the risk-free rate.

We also calculate a time series of realized monthly returns which we use to calculate
CAPM betas (see Section B.D of this appendix). The monthly realized returns are based
on settlement prices to minimize the impact of market micro-structure issues.

Finally, we calculate realized alphas by looking at the realized market returns.
~i,m I3 My i ,MKT
Q= Tt+1 B (B.2)

Here, the market return is the excess return on the stock market in the country where the

firm is listed. Betas are calculated as explained in Section B.D of this appendix.

C.2. Expected Returns and Alphas

We match the data to expected dividends from IBES. For each claim at time ¢, we
match the observation to the most recent IBES expectations for the same firm, matched
by GVKEY, for the period ending at the expiration of the claim. We use annual expected
dividends per share.

Using these expectations, we calculate expected yield-to-maturity as:

. 1/m
2,m E Dhmm
Et[rt:t—i-m] = (%) -1 (B.3)

t

where F; [riﬁm] is the expected return between period ¢ and ¢ +m for the dividend on firm
1 that is paid out at period t + m. The term F; [Dt+m] is the time-t expected value of the
dividend.

There is a risk that the dividends expectations in IBES refers to a different traded
version of the firm than the dividend strip does. We therefore discard any observation
where the expected annualized return is above 30% or below -10%.

We calculate expected yield-to-maturity alphas as:

at tt+m T =B [rt t+m] ﬂMatumty %Ijvt% <B4)

where aiﬁm is the annualized alpha between period ¢t and ¢t + m for the dividend paid out
by firm ¢ in period ¢ +m, and )\%’jfl is equal to the market risk premium (in future returns),

which we assume is 5%. Finally, Bf;f;twiw is the beta-to-maturity, calculated as explained
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in the next section.

D. Calculating CAPM Betas

We estimate CAPM betas in regressions of monthly return on the strip onto the market
return where we include lags of the market to account for stale prices following Dimson
(1979) and Lewellen and Nagel (2006). Following the literature, we impose the restriction
that the last three lags have the same slope parameter to reduce the number of parameters

and run the following regression:
Mmoo ot,m i,m_M.e i,m_M,.e im, M, M.,e M.,e i,m
Tia+1 =By + By Ty H By T+ By (T,t—l + 1y )+ €tt+1> (B.5)

where rﬁf is the excess return on the market between period ¢ and ¢ + 1. The market is
again the return on the market portfolio in the country where the main trading vehicle of
the underlying firm is located. We calculate 84™ = i’m + Bém + ﬁ;m Here t is measured
in months and the maturity m is measured in years. We round up the maturity of the
claim to the nearest integer; since the regressions are monthly, the maturity measured in
years are often non-integer. That is, a claim has maturity of n when 12 x (n — 1) <
maturity in months < 12 X n.

When calculating the expected alpha-to-maturity, we use yield-to-maturity betas. We

calculate these as the average betas over the remaining life of a given strip:
1 m
;\;[TZturity = E Z BZJ (B6)
j=1

For instance, the yield-to-maturity beta of a 3-year claim is the average beta on the 1-year,

2-year, and 3-year strip on the given firm.
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Table 1

Growth Rates and the Characteristics that Predict Returns
This table shows the relation between future growth rates and the characteristics that predict returns. Panel A shows
the results of a panel regression for 50 characteristics sorted portfolios. The dependent variables are the realized 15-
year growth rates of dividends and earnings and the explanatory variables are the characteristics of the 50 portfolios.
The regressions include time fixed-effects. Panel B reports the univariate correlations between the expected growth
rates and firm characteristics. The expected growth rates are the median long-term growth (LTG) expectations from
IBES. Panel C and D reports results from monthly firm level panel regressions. The dependent variable is the long-
term growth rates from survey data and the explanatory variables are contemporaneous firm characteristics. All
characteristics and survey growth rates are measured in cross-sectional percentiles. Standard errors are two-way
clustered across firm and date. Below the parameters we report ¢-statistics. Statistical significance at the 5% level is
indicated in bold. The sample is 1963-2019 in Panel A and 1981-2019 in Panels B through D.

Panel A: Portfolio level regressions

Dependent variable: Explanatory Variables

High value High profit Lowinv  Lowbeta High pay R?
Realized 15-year -0.01 -0.02 -0.00 -0.02 -0.02 0.38
dividend growth rate (-2.74) (-2.07) (-0.16) (-4.35) (-4.57)
Realized 15-year -0.10 -0.07 0.11 -0.01 -0.06 0.05
carnings growth rate (2.22) (-2.50) (1.99) (-0.33) (-2.49)

Panel B: Firm-level univariate correlations between characteristics and analyst expectations of growth rates

High BM High profit Lowinvest Lowbeta High pay
Expected growth (LTG) -0.38 -0.13 -0.26 -0.29 -0.30

Panel C: Firm-level regressions of survey expected growth rates on different characteristics

US Only Dependent variable: analyst expected growth rates (LTG)
(1 () 3) “) (%) (6)
High BM -0.490 -0.511 -0.445 -0.334 -0.331 -0.328
(-53.60) (-21.63) (-53.21) (-34.10) (-27.53) (-22.54)
High profit -0.197 -0.293 -0.212 -0.0954 -0.0563 -0.168
(-22.61) (-9.554) (-24.70) (-11.40) (-6.230) (-11.42)
Low investment -0.0923 -0.0944 -0.0737 -0.0459 -0.0356 -0.0412
(-16.33) (-4.841) (-13.99) (-12.23) (-7.025) (-8.599)
Low beta -0.173 -0.280 -0.131 -0.0672 -0.0265 -0.0463
(-18.51) (-12.65) (-15.33) (-9.053) (-2.745) (-4.777)
High payout -0.259 -0.168 -0.229 -0.116 -0.120 -0.0857
(-33.51) (-6.810) (-31.18) (-16.63) (-12.91) (-9.287)
Fixed effect Date Date Date Firm/Date Firm/Date Firm/Date
Cluster Firm/Date Firm/Date Firm/Date Firm/Date Firm/Date Firm/Date
Weight Analysts Market Cap None Analysts Analysts Analysts
Sample Full Full Full Full Early Late
Observations 582,580 582,580 582,580 582,488 267,544 314,914
R-squared 0.467 0.406 0.321 0.740 0.810 0.707
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Table 1 -- Continued
Growth Rates and the Characteristics that Predict Returns

Panel D: Firm-level regressions of survey expected growth rates on different characteristics —
International Evidence

Non-US Dependent variable: analyst expected growth rates (LTG)
(1) @) ) 4) ©) (©)
High value -0.166 -0.191 -0.151 -0.132 -0.146 -0.161
(-16.92) (-9.280) (-17.15) (-10.93) (-6.197) (-9.475)
High profit -0.090 -0.112 -0.076 -0.157 -0.055 -0.270
(-8.964) (-5.087) (-8.768) (-12.71) (-2.129) (-15.15)
Low investment -0.025 -0.007 -0.023 0.019 -0.021 0.036
(-3.613) (-0.525) (-3.778) (-3.40) (-2.173) (-5.492)
Low beta -0.055 -0.115 -0.052 0.007 0.021 0.04
(-5.770) (-7.124) (-5.990) (-0.765) (-1.179) (-2.8210)
High payout -0.152 -0.135 -0.138 -0.062 -0.045 -0.049
(-17.53) (-8.381) (-17.65) (-7.075) (-2.547) (-4.053)
Fixed effect Date Date Date Firm/Date Firm/Date Firm/Date
Cluster Firm/Date Firm/Date Firm/Date Firm/Date Firm/Date Firm/Date
Weight Analysts Market Cap None Analysts Analysts Analysts
Sample Full Full Full Full Early Late
Observations 366,867 366,867 366,867 366,795 104,264 262,498
R-squared 0.06 0.09 0.04 0.32 0.49 0.35
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Table 2
Risk and Return for Portfolios Sorted on Duration
This table shows the risk and return characteristics for ten long-only portfolios sorted on duration and a long-short portfolio. We sort stocks into ten groups based
on our measure of ex ante duration. Portfolio weights are value-weighted and rebalanced monthly and the breakpoints are refreshed each June and based on NYSE
firms. CAPM alpha is the intercept in a regression of the excess return to the portfolio on the excess return to the market portfolio. We report #-statistics in
parenthesis under parameter estimates and statistical significance at the five percent level is marked in bold. Sharpe ratios and information ratios are annualized.
Excess return and alphas are in monthly percent. Realized duration is calculated based on the assumption that dividend growth rates of the portfolios continue
forever and a constant discount rate of 8% per year for all portfolios. Sample is US firms from 1929 to 2019.

Portfolios sorted on duration Long/short

1 2 3 4 5 6 7 8 9 10 10 minus 1

Excess return 0.67 0.68 0.68 0.69 0.73 0.83 0.71 0.71 0.70 0.55 -0.13

(5.87) (5.22) 4.57) (4.28) (4.09) (4.35) (3.34) (3.16) (2.70) (1.80) (-0.53)

CAPM alpha 0.30 0.23 0.15 0.11 0.09 0.14 -0.05  -0.10  -0.22  -0.49 -0.79

(5.18) (4.38) (3.08) (2.33) (1.69) (2.58) (-0.82)  (-138)  (-243)  (-3.79) (-4.94)

CAPM beta 0.61 0.73 0.86 0.95 1.06 1.13 1.25 1.33 1.51 1.69 1.08

(56.68)  (74.66)  (93.59)  (108.21)  (109.33) (109.59) (105.90) (103.92)  (91.62)  (71.32) (36.73)

Sharpe ratio 0.62 0.55 0.48 0.45 0.43 0.46 0.35 0.33 0.28 0.19 -0.06

Information ratio 0.55 0.46 0.33 0.25 0.18 0.27 -0.09 -0.15 -0.26 -0.40 -0.52

Adjusted-R? 0.75 0.84 0.89 0.91 0.92 0.92 0.91 0.91 0.89 0.82 0.55

# of observations 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091
Realized dividend growth rates 2% 3% 4% 4% 4% 4% 5% 5% 6% 7%
Analyst expected growth rates 7% 8% 9% 9% 10% 11% 12% 13% 13% 16%

Realized duration 15 17 18 18 20 20 24 28 33 59
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Table 3
The Duration Factor

This table shows the risk and return characteristics for the portfolios that constitute our duration factor. We sort stocks
into six portfolios based on ex ante size and duration. The breakpoints are the median market capitalization and the
30" and 70" percentile of duration. Portfolio weights are value-weighted and rebalanced monthly and the breakpoints
are refreshed each June and based on NYSE firms. The duration factor is long 50 cent in the two long-duration
portfolios and short 50 cent in each of the two short-duration portfolios. CAPM alpha is the intercept in a regression
of the risk factor on the excess return to the market portfolio. We report ¢-statistics in parentheses under parameter
estimates and statistical significance at the 5% level is marked in bold. Sharpe ratios and information ratios are
annualized. Excess return and alphas are in monthly percent. Returns in the US sample are from 1963-2019, realized
growth is from 1929-2020, and expected growth is from 1981-2019. The global sample is from 1990-2019.

Long duration Short duration Duration factor
Panel A: US Largecap Smallcap Largecap  Small cap
Excess return 0.43 0.63 0.58 0.94 0.23
(1.99) (2.33) (4.10) (5.66) (1.91)
CAPM alpha -0.24 -0.13 0.15 0.48 0.50
(-4.38) (-0.93) (3.08) (5.63) (5.64)
CAPM beta 1.24 1.40 0.79 0.85 -0.50
(99.19) (45.72) (69.39) (43.91) (-24.69)
Sharpe ratio 0.26 0.31 0.55 0.75 0.25
Information ratio -0.59 -0.12 0.41 0.76 0.76
Adjusted-R? 0.94 0.76 0.88 0.74 0.47
# of observations 678 678 678 678 678
Analyst expected growth 14.0% 15.9% 8.1% 8.9%
Realized dividend growth 4.6% 6.0% 1.3% 1.5%
Long duration Short duration Duration factor

Panel B: Global Large cap  Small cap  Largecap  Small cap

Excess return 0.37 0.36 0.54 0.69 0.25

(132) (1.19) (2.74) (331 (1.97)
CAPM alpha -0.22 -0.24 0.13 0.28 0.44

(-3.80) (-1.88) (2.33) (3.18) (4.82)
CAPM beta 1.22 1.24 0.84 0.83 -0.39

(89.00) (41.83) (62.29) (39.80) (-18.34)
Sharpe ratio 0.24 0.22 0.50 0.61 0.36
Information ratio -0.70 -0.35 0.43 0.59 0.89
Adjusted-R? 0.96 0.83 0.92 0.82 0.49
# of observations 354 354 354 354 354
Analyst expected growth 11.4% 14.4% 7.2% 8.3%
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Summarizing the Major Risk Factors with the Duration Factor

Table 4

This table shows the results of factor regressions in the US sample and in the broad global sample. Each factor is on
six portfolios based on ex ante size and the characteristic the portfolio is sorted on. The breakpoints are the median
market capitalization and the 30" and 70" percentile of duration. Portfolio weights are value-weighted and rebalanced
monthly and the breakpoints are refreshed each June and based on NYSE firms. Each factor is long 50 cent in the two
high-characteristic portfolios and short 50 cent in each of the two low-characteristic portfolios, except the SMB factor,
which is long the small duration-sorted portfolios and short the large duration-sorted portfolios. We construct global
factors as the market-cap weighted average of country specific factors. Three-factor alpha is in the intercept in a
regression of the given equity risk factor on the market portfolio, the duration factor, and the SMB factor. CAPM
alpha is the intercept in a regression of the risk factor on the excess return to the market portfolio. We report #-statistics
in parentheses under parameter estimates and statistical significance at the 5% level is marked in bold. The US sample
is from 1963 to 2019 and the global sample is from 1990 to 2019.

Panel A: US Sample

Factor

HML

RMW

CMA

BETA

PAYOUT

Panel B: Global Sample

Factor

HML

RMW

CMA

BETA

PAYOUT

CAPM model Three-factor model

Acapm Bcarm R? Xpur Bukt Bsmb Bpur R?
0.39 -0.16 0.06 -0.02 0.13 0.37 0.66 0.32
(3.75) (-6.73) (-026)  (462)  (10.65)  (15.49)

0.32 -0.11 0.05 0.09 0.14 -0.07 0.48 0.35
(3.87) (-5.93) (1.31) 634)  (2.67)  (15.03)

0.37 -0.18 0.15 0.09 0.02 0.25 0.44 0.38
(5.19)  (-10.87) (1.38) (1.15)  (10.56)  (15.48)

0.49 -0.73 0.53 -0.04 -0.20 -0.02 1.05 0.85
(422)  (27.87) (0.52)  (-9.63)  (-0.80)  (33.59)

0.26 -0.30 0.37 -0.03 -0.02 0.04 0.57 0.70
(3.86)  (-19.89) (-0.72)  (-1.67)  (232)  (25.83)

CAPM model Three-factor model

Acapm Beapm R? AThree Buke Bsmp Bpur R?
0.29 -0.09 0.03 -0.02 0.17 0.24 0.66 0.24
(240)  (:3.18) (-0.15)  (4.62) (4.12)  (9.93)

0.42 -0.14 0.18 0.22 0.04 -0.12 0.47 0.56
(6.02) (-8.74) (4.25) (239)  (442)  (1527)

0.29 -0.17 0.18 0.05 0.03 0.20 0.51 0.35
(3.17) (-7.95) (0.56) (1.20) (4.56)  (10.54)

0.42 -0.65 0.59 -0.10 -0.19 0.10 1.18 0.89
(347 (-22.79) (-158)  (9.01)  (3.06)  (30.87)

0.28 -0.19 0.26 0.03 0.03 0.03 0.56 0.62
(3.92)  (-11.26) (0.64) (1.66) (1.04)  (17.66)

LTG

-9.5%

-5.1%

-6.7%

-7.9%

-7.2%

LTG

-7.1%

-5.1%

-5.7%

-6.6%

-6.9%

# obs

678

678

678

678

678

# obs

354

354

354

354

354
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Table 5

Multi-Horizon Returns Tests for the Duration Factor

This table shows results from the Chernov, Lochstoer, and Lundeby (CLL, 2022) multi-horizon returns (MHR) tests
for our three-factor model with the excess return on the market, the duration factor, and the duration-and-size-based
smb factor. The first row gives the p-value of the GMM J-test provided in CLL (2022, Section 2), which estimates the
three-factor model to fit one-period (monthly) returns and then tests the model’s ability to price the test assets’ longer-
horizon returns at 3, 6, 12, 24, and 48 months. The test assets for the first column are Mkz, Dur, and SMB at those
horizons, while for the second column the FF5 factors at those horizons are used. Mean absolute pricing errors, Sharpe
ratios, and information ratios in the remaining rows are with respect to the multi-horizon test asset returns. The sample

is 1963-2019.

FF5 Factors

Test Assets: Own Model’s Factors
p-value (GMM) 0.060
Mean absolute price error (annualized) 0.042
Max. Sharpe ratio 1.133
Max. information ratio (annualized) 0.776

0.619
0.036
1.133
0.779
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Table 6
Summary Statistics on Single-Stock Dividend Futures

This table reports summary statistics for our matched sample on single-stock dividend futures. Single-stock dividend
futures are futures prices for dividends paid out in a given calendar-year on a given firm. Panel A reports statistics for
realized annual returns on the individual strips. Each contract is for the dividends on 1,000 shares. The price of the
contract is measured in local currency, which can be USD, EUR, GBP, or CHE. Panel B shows summary stats on the
maturity of the strips and CAPM betas of the strips. The CAPM betas are measured in time-series regressions of
monthly returns on the market portfolio in the given country, including lags, as explained in the Appendix. Panel C
shows the characteristics of the firms in our sample, measured in cross-sectional percent of the firms listed in same
country as the given firm. The sample is from 2010 to 2019.

# obs Mean Sd Min Max
Panel A: Returns and Prices
Annual returns 1,474 0.049 0.21 -1 1.32
Annual returns (using settlement prices) 1,474 0.050 0.21 -1 1.32
Annual log-returns 1,465 0.034 0.22 -2.33 0.84
Annual volume 1,711 11,864 41,701 0 1.07e+06
Open interest 1,711 5,444 15,438 1 341,816
Price of contract 1,711 2,149 3,943 0 69,000
Notional (in thousands) 1,711 4,075 7,011 0 71,781
Panel B: Maturity and Betas
One-year dummy 1,711 0.36 0.48 0 1
Two-year dummy 1,711 0.33 0.47 0 1
Three-year dummy 1,711 0.22 0.42 0 1
Four-year dummy 1,711 0.090 0.29 0 1
Maturity (in years) 1,711 2.04 0.97 1 5
CAPM beta of strip 1,711 0.51 0.85 -1 1.50
# Obs for CAPM beta 1,711 36.4 27.5 2 101
Panel C: Sample Representativeness
Duration 1,711 33.1 28.7 0.078 100
Book-to-market 1,696 52.8 27.0 0.26 100
Market cap 1,711 97.2 3.24 74.1 100
Operating profit 1,689 62.4 22.7 4.47 99.9
Investment 1,699 48.8 21.9 2.55 99.5
Beta 1,700 74.5 18.0 7.45 100
Payout 1,669 67.3 21.3 0.51 100
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Table 7
Expected CAPM Alpha for Single Stock Dividend Futures
This table reports the expected average CAPM alpha for portfolios of dividend strips on different firms. At the end of
December, we assign all dividend strips to a long- or short-duration portfolio based on the cash-flow duration of the
underlying firm. Firms are categorized as long (short) duration if the cash-flow duration is above (below) the median
of all the firms on the exchange where the firm is listed. We then calculate a pooled average CAPM alpha for all strips
of a given maturity in a given portfolio. Standard errors reported below the estimates are clustered by firm and date.
See Appendix for details on how we calculate CAPM alphas. The data are from 2010 to 2019.

Maturity of Strip
1 year 2 year 3 year 4 year Average
Short-duration firms 0.078 0.068 0.056 0.038 0.066
(0.0046)  (0.0061)  (0.0070)  (0.0057) (0.0045)
Long-duration firms 0.092 0.077 0.064 0.035 0.077
(0.011) (0.011) (0.0071)  (0.0070) (0.0090)
Average across firms 0.085 0.073 0.060 0.037

(0.0066)  (0.0077)  (0.0057)  (0.0054)
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Table 8
Expected Return and Alpha on Single Stock Dividend Futures

This table reports results from panel regressions with expected return and alphas to single stock dividend futures as
dependent variables. We calculate expected returns as the expected yield to maturity using expected dividends per
share from the IBES database. Alphas are expected returns minus beta times a market risk premium of 5%. Regressions
are annual using end-of-December prices. See Appendix for details on how we calculate expected return and betas.
The cash-flow duration characteristic is standardized by the cross-sectional standard deviation. In the equations below,
t, i, and m denotes time, firm, and maturity of the strip at time ¢ (measured in years). The data are from 2010 to 2019.
Standard errors reported in parentheses are two-way clustered as specified in the table. Statistical significance is
denoted by *** p<0.01, ** p<0.05, * p<0.1

Panel A: Expected returns and alphas

. B [Di ] 1/m
Expected returns: E, [rt‘ﬁn = (M)

. R
CAPM alphas: aé‘:—nm = Et [rtl-’i—rfn - ﬁ‘rlr':crlltu‘rity X 5%
Dependent variable Expectedret Expectedret Expectedret CAPMalpha CAPMalpha CAPM beta
2-year dummy -0.000 -0.004 -0.013* -0.012* 0.427%%*
(0.005) (0.006) (0.006) (0.006) (0.119)
3-year dummy -0.002 -0.009* -0.027%**  -0.025%** 0.816%**
(0.003) (0.004) (0.005) (0.005) (0.111)
4-year dummy -0.017***  -0.022%**  -0.045%**  -0.044*** 0.805%**
(0.004) (0.004) (0.007) (0.007) (0.137)
CAPM beta of strip (™)  0.011%** 0.014%%%
(0.003) (0.004)
CAPM beta of firm (%) 0.044%* 0.044** 0.599**
(0.016) (0.016) (0.195)
Cash-flow duration of firm -0.004 -0.003 -0.001 -0.002
(higher = shorter duration) (0.004) (0.004) (0.004) (0.004)
Observations 1,226 1,236 1,226 1,236 1,236 1,699
R-squared 0.13 0.10 0.14 0.10 0.12 0.20
Fixed effect Date/Cur Date/Cur Date/Cur Date/Cur Date/Cur Date/Cur
Cluster Date/Firm Date/Firm Date/Firm Date/Firm Date/Firm Date/Firm
Weight None None None None Notional None
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Table 9

Realized Return and Alpha on the Annual Horizon for Single Stock Dividend Futures
This table reports results from panel regressions with realized return and alphas to single stock dividend futures as
dependent variables. A single stock dividend future is the price for the dividend that is paid out in a given year by a
given firm. We calculate realized annual returns for each calendar year. We calculate realized alpha as the realized
returns minus the product of the realized market return and the beta of the strip. The beta of the strip is estimated in
first-stage regressions (see Appendix A for details). The cash-flow duration characteristic is standardized by the cross-
sectional standard deviation. In the equations below, ¢ i, and m denotes time, firm, and maturity of the strip at time ¢
(measured in years). The data are from 2010 to 2019. Standard errors reported in parentheses are two-way clustered
as specified in the table. Statistical significance is denoted by *** p<0.01, ** p<0.05, * p<0.1

Panel A: Realized versus expected returns

Expected returns: E, [rtiﬁn =( i
t

. o im _ pim+1 im
Realized returns: 1,7 = fii1 /fz

Et[Diym]

)1/m

Dependent variable Realized Realized Realized log- Realized log- Realized Realized log-
return returns return return return return
Expected return 0.68*** 0.76%** 0.58***
(0.17) (0.17) 0.17)
Expected log-return 0.771%*** 0.80%** 0.71%%%*
(0.14) (0.14) (0.12)
Observations 1,059 1,059 1,054 1,054 1,059 1,054
R-squared 0.203 0.251 0.171 0.218 0.187 0.194
Fixed effect Firm Date/Firm Firm Date/Firm Firm Date/Firm
Cluster Date/Firm Date/Firm Date/Firm Date/Firm Date/Firm Date/Firm
Weight None None None None Notional Notional
Panel B: Realized returns and alphas
Realized returns: 7,57 = fL7+ /fim
Realized alphas: @ = % — gimyMkt
Dependent variable Realized Realized log- Realized Realized Realized log- Realized log-
returns returns alpha alpha alpha alpha
2-year dummy 0.0021 0.00066 -0.035 -0.035 -0.037 -0.037*
(0.018) (0.016) (0.026) (0.023) (0.023) (0.019)
3-year dummy 0.011 0.0018 -0.062 -0.062 -0.071 -0.071*
(0.031) (0.028) (0.041) (0.041) (0.038) (0.038)
4-year dummy -0.020 -0.035 -0.084* -0.084* -0.100** -0.100**
(0.034) (0.032) (0.042) (0.042) (0.042) (0.041)
Observations 1,466 1,457 1,466 1,466 1,457 1,457
R-squared 0.187 0.156 0.227 0.227 0.205 0.205
Fixed effect Date/Firm Date/Firm Date/Firm Date/Firm Date/Firm Date/Firm
Cluster Date/Firm Date/Firm Date/Firm Date/Strip Date/Firm Date/Strip
Weight None None None None None None
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Panel C: Realizations and firm characteristics

Dependent variable Realized Realized log- Realized Realized Realized log- Realized log-
returns returns alpha alpha alpha alpha
2-year dummy 0.0011 -0.0012 -0.034 -0.035 -0.035 -0.037
(0.019) (0.016) (0.025) (0.025) (0.021) (0.021)
3-year dummy 0.0028 -0.0065 -0.069 -0.069 -0.077* -0.076*
(0.033) (0.029) (0.041) (0.040) (0.035) (0.035)
4-year dummy -0.022 -0.038 -0.086* -0.091* -0.10* -0.11%*
(0.035) (0.033) (0.045) (0.046) (0.045) (0.047)
Cash-flow duration of firm 0.0052 0.010 0.015 0.021 0.020 0.025%*
(higher = shorter duration) (0.015) (0.013) (0.014) (0.013) 0.011D) (0.011)
Observations 1,473 1,464 1,473 1,473 1,464 1,464
R-squared 0.045 0.039 0.064 0.072 0.066 0.069
Fixed effect Date/currency  Date/currency  Date/currency  Date/currency  Date/currency  Date/currency
Cluster Date/Firm Date/Firm Date/Firm Date/Firm Date/Firm Date/Firm
Weight None None None Notional None Notional

Panel D: Expectations errors

Dependent variable Realized returns — Expected Realized log-returns —
returns Expected log-returns
2-year maturity dummy 0.0061 0.0050 -0.0012 -0.0032
(0.016) (0.016) (0.012) (0.014)
3-year maturity dummy 0.015 0.011 -0.0041 -0.0059
(0.031) (0.029) (0.029) (0.028)
4-year maturity dummy -0.0020 -0.0029 -0.023 -0.023
(0.031) (0.029) (0.034) (0.032)
Cash-flow duration of firm 0.017 0.017 0.017 0.018
(higher = shorter duration) (0.012) (0.012) (0.010) (0.010)
Observations 1,065 1,065 1,060 1,060
R-squared 0.078 0.074 0.074 0.070
Fixed effect Date/currency Date/currency  Date/currency — Date/currency
Cluster Date/Firm Date/Firm Date/Firm Date/Firm
Weight None Notional None Notional
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Table 10

Alpha Accounting
This table reports an implied term structure of CAPM alpha and the implied CAPM alpha on long- and short-duration
firms. We specify a functional form for the term structure of CAPM alphas and calibrate it such that it is consistent
with the pricing of near-future dividends and such that the market has a CAPM alpha of zero. The table shows the
average CAPM alpha for different parts of the term structure. It also shows the average weights of the market portfolios
along these parts, calculated based on the assumption that discount rates are two percentage points higher than growth
rates in perpetuity. The table also shows the weights and aggregate CAPM alphas for a hypothetical short-duration

firm and a hypothetical long-duration firm. See text for more details.

Average CAPM alpha

Market portfolio:
Total weight

Duration (3w™m)
CAPM alpha: Gw™a™)

Short-duration firm:

Total weight
Duration (3w™m)
CAPM alpha: GCw™a™)

Long-duration firm:

Total weight
Duration (3w™m)
CAPM alpha: Cw™a™)

Maturity of claims (years) Total
1-20 21-40 41-60 61-80  81-100 100+
2.8 -1.40 -3.14 -4.27 -5.11 -7.27
0.46 0.25 0.14 0.07 0.04 0.05 1
33.33
0.00
0.71 0.21 0.06 0.02 0.01 0.00 1
16.7
2.11
0.28 0.21 0.16 0.11 0.08 0.22 1
66.67
-2.27
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Table 11
CAPM Alpha on Corporate Bonds

This table reports CAPM alphas for corporate bond portfolios. We sort firms into two groups based on the median
firm characteristic. Within each group, we sort all outstanding corporate bonds into portfolios based on maturity.
Portfolio weights are equal-weighted and rebalanced monthly. We calculate CAPM alpha as the intercept in a time
series regression of monthly excess portfolio returns on the excess market returns. Excess returns are calculated as
returns in excess of a treasury claim with the same maturity. The market return is the equal-weighted return across all
bonds. We report #-statistics below parameter estimates in parenthesis. Bold font marks statistical significance at the
5% level. Alphas are annualized. The sorting is such that the 2-year portfolio, for instance, contains all bonds with
maturity between 1 and 2 years. The sample is US firms from 2002 to 2016.

Maturity of bonds (in years)
1 2 5 7 10 20 30 Average

Panel A: Duration

Short-duration firms 0.02 0.01 0.00 -0.01 0.00  -0.02 -0.03 -0.01
(525  (2.76)  (0.71)  (-1.41) (-0.05)  (-3.10)  (-1.94)

Long-duration firms 0.03 0.01 0.00 -0.01 -0.01 -0.03 -0.03 -0.01
(375 (1.13)  (-0.63)  (-1.29) (-0.92)  (-4.09)  (-1.19)

Average 0.02 0.01 0.00 -0.01 0.00 -0.03 -0.03

Panel B: Growth

Low-LTG firms 0.03 0.01 0.00 -0.01 -0.01 -0.03 -0.04 -0.01
427y  (1.82)  (0.19)  (-1.85) (-091)  (-3.75)  (-2.30)

High-LTG firms 0.02 0.01 0.00 0.00 0.00  -0.02  -0.03 0.00
(353)  (1.67)  (-025)  (-1.22) (0.06)  (3.11)  (-1.56)
Average 0.03 0.01 0.00 -0.01 0.00  -0.02  -0.04

Panel C: Value

Low BM firms 0.01 0.01 0.00 0.00 0.00  -0.02  -0.03 -0.01
(353) (164  (089)  (-097)  (-0.02) (337)  (-1.76)

High BM firms 0.03 0.01 -0.01 -0.01 -0.01 -0.03  -0.04 -0.01
(3.94)  (1.75)  (-0.95)  (-2.04)  (-121)  (-3.86)  (-2.20)

Average 0.02 0.01 0.00 -0.01 0.00 -0.03 -0.04
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Figure 2

Loadings of Expected Growth Rates on Characteristics That Predict Returns: Global Evidence
This figure shows the loading of expected growth rates on characteristics that predict returns. In each country, we
regress the expected growth rates on the below characteristics in multivariate panel regressions. In almost all cases,
the characteristics that predict high also returns predict low expected growth.
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Figure 3

Cumulative return and CAPM alpha to the Duration Factor
This figure shows the cumulative excess return and CAPM alpha to the duration factor. The duration factor is
constructed as follows. We sort stocks into six portfolios based on ex ante size and duration. The breakpoints are the
median market capitalization and the 30" and 70" percentile of duration. Portfolio weights are value-weighted and
rebalanced monthly and the breakpoints are refreshed each June and based on NYSE firms. The duration factor is long
50 cent in the two high-duration portfolios and short 50 cent in each of the two short duration portfolios. The alpha is
the return to the duration factor minus the product of duration factor’s market beta and the excess return on the market
portfolio.
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Figure 4
Realized Dividend Growth Rates for Long- and Short-Duration Firms
This figure shows the realized dividend growth rates for the long- and short-leg of our duration factor. We sort stocks
into six portfolios based on ex ante size and duration. The breakpoints are the median market capitalization and the
30" and 70" percentile of duration. Portfolio weights are value-weighted and rebalanced monthly and the breakpoints
are refreshed each June and based on NYSE firms. The duration factor is long 50 cent in each of the two high-duration
portfolios and short 50 cent in each of the two short duration portfolios. The figure shows the average cumulative
growth rate of the two high-duration portfolios per year after formation period and the average cumulative real growth
rate of the two low-duration portfolios. The results are based on the 1929-2019 US sample.
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Figure 5
Risk-Adjusted Returns to the Duration Factor around the World
This figure shows the #-statistic for the CAPM alpha to the duration factor in different countries. The duration factor
is constructed as follows. We sort stocks into six portfolios based on ex ante size and duration. The breakpoints are
the median market capitalization and the 30" and 70" percentile of duration. Portfolio weights are value-weighted and
rebalanced monthly and the breakpoints are refreshed each June and based on NYSE firms. The duration factor is long
50 cent in the two high-duration portfolios and short 50 cent in each of the two short duration portfolios. The alpha is
the intercept in a regression of excess returns to the duration factor on the excess returns to the market portfolio.
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Figure 6
Single-Stock Dividend Futures: Two Examples
This figure shows the price, open interest, and volume for single-stock dividend futures. The left figure shows the
future for the 2020 dividend of AXA. Prices are measured in thousands of Euros on the left y-axis and open interest
is measured in number of contracts on the right y-axis. Volume shown in bar charts is standardized for ease of reading.
The figure to the right shows similar statistics for the future on the 2020 dividend of Deutsche Bank.
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Figure 7

A Term Structure of Implied CAPM Alphas
This figure shows an implied term structure of CAPM alpha for the first 100 dividend strips. We specify the following
functional form for CAPM alphas:

am™m =Ky — Kk, Inm

and chose K, and k; such that the alphas are consistent with the evidence from dividend strips and such that the alpha
on the market portfolio is equal to zero. The latter is based on assumptions about the weights on future cash-flow for
the market; see text for detail.
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Figure 8
Consumption and Discount Rate Risk for Duration-Sorted Portfolios

This figure shows covariances between the returns on the duration-sorted portfolios considered in Table 2 and two-
year-ahead cumulative realized consumption growth and market returns. Panel A shows the covariances between each
portfolio’s realized alpha in quarter 7, measured as ! = r{ — % X ¥t and log real consumption growth (PCE on
nondurable goods and services, deflated with the CPI) summed ¢ + 1 through ¢ + 8. Panel B shows covariances between
each portfolio’s raw return in quarter # and the same consumption measure. Panel C shows covariances between each
portfolio’s raw return in quarter ¢ and cumulative ¢ + 1 through ¢ + 8 market returns. Heteroskedasticity- and
autocorrelation-robust standard errors (bars =1 SE) are calculated using the quadratic spectral kernel with 13 lags,
following the lag selection rule in Lazarus et al. (2018, eq. (22)). The samples are 1947-2019 for Panels A and B, and
1929-2019 for Panel C.
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Appendix C. Duration-Driven Returns in the Lettau
and Wachter (2007) Model

In this section, we show that the major equity risk factors all arise in the Lettau and
Wachter (2007) model. In this model, the equity term structure is downward sloping
because the cash-flow risk is higher on near-future cash flows than on distant future cash

flows, and because discount-rate risk is not priced.

A. Model

The economy has an aggregate equity claim with dividends at time ¢ denoted by D,

where d; = In(D;) evolves as
Adt+1 = Mg + z; + Od€d,t+1- (Cl)
Here 11, € R is the unconditional mean dividend growth and z; drives the conditional mean:

Zt41 = P22t T 0262141, (C-Q)

where 0 < ¢, < 1. Further, €;,41 and €,y; are normally distributed mean-zero shocks
with unit variance and o4, o, are their volatilities.

The risk-free rate r/ is constant and the stochastic discount factor is given by

1

M;, 1 = exp (—rf — 51’? — xted,tﬂ) , (C.3)

where the state variable x; drives the price of risk:

Ti41 = (1 - SO:L‘):E + Pl + Oz€qt+1- (C4)

The parameter & € R* is the long-run average, 0 < ¢, < 1, and €, is a normally
distributed mean-zero shock with unit variance and o, is the volatility. The three shocks
have correlations denoted pg., pa., and p,., where p,, = 0, pg. = 0, and py, < 0, meaning
that there is long-run insurance in dividend growth: a negative shock to dividends is over
time partly offset by higher dividend growth.

To understand the stochastic discount factor, note that investors are averse towards
shocks to dividends, €444+1. A negative shock to dividends increases marginal utility and

thus increases the value of the stochastic discount factor. The effect of a given shock on



the stochastic discount factor depends on the price-of-risk variable x;, which in this sense
can be interpreted as a risk-aversion variable. In addition, shocks to the price of risk and
the conditional growth rate z; are only priced to the extent that they are correlated with
the dividend shock.

B. Prices and Returns

The analysis is centered around the prices and returns on n-maturity dividend claims.
The price of an n-maturity claim at time ¢ is denoted P;* and the log-price is denoted
pY = In(P}*). Since an n-maturity claim becomes and n — 1 maturity claim next period, we

have the following relation for prices:
P'=E, [MtJrlPtr-fll} ) (C-5)

with boundary condition P? = Dy, because the dividend is paid out at maturity. To solve
the model, we conjecture and verify that the price dividend ratio is log-linear in the state
variables z; and x;:

pr

Ht =exp (A" + Blz + Byxy) . (C.6)
¢

The price dividend ratio can then be written as

t

D
= Et |:Mt+1 Zt)+1 exp (An_l + B?_lth + Bg_ll't_i_l) . (C?)
Matching coefficients of (C.6) and (C.7), using (C.1) and (C.4), gives

1
AT = A =l g+ B (1 - pn)E+ SV

B = B" ' (p, — paz0s) — 04+ B ' pg.o,

n

1 —
R
11—,

z Y

where B? =0, A° = 0, and
Vn—l _ Bn—l Bn—l
— var (UdEd,tH + 5, 0,641 1+ Dy, Uxﬁx,t+1) ,

which provides the solution to the model and verifies the conjecture.

The term B is positive for all values of n > 0, meaning that the price increases relative



to dividends when the expected growth rate of dividends increases. Similarly, B is negative
for all values of n > 0, meaning that the price relative to dividends decreases when the
price of risk is higher.

The simple return on the n maturity claim is denoted R}, ; = P /P — 1, and the

log-return is r%, ; = In (1 + R?H). The expected excess return is

1

By [rp, — '] —|—§va,rt(7“f+1) (C.8)
= — covy(risy; Mus1) (C.9)
=(04+ B ' pg.0.)7y. (C.10)

Because pg. < 0 and B is strictly increasing in maturity n, the expected return decreases in

maturity. Accordingly, the term structure of expected equity returns is downward sloping.

C. The Cross-Section of Stock Returns

Following Lettau and Wachter (2007), we introduce a cross-section of stocks by assuming
the existence of i = 1,..., N firms that each produce a share s of the aggregate dividends.
The share produced by each firm varies deterministically over time as the firms move
through their life cycles. The share starts at s and grows at g, each period until the share
hits 5 = s x (1 + g,)/? after which it decreases by g, until the share hits s and the cycle
repeats. The lower bar is set such that the shares sum to one cross-sectionally, meaning

that s+ s(1+ g,) /2 + S V2

=1

(1+gs)'s = 1. We assume N = 200 firms, meaning each firm
has a life cycle of 50 years. The firms are identical except that they are at different points
in their life cycle: the first firm starts at s, the next firm has grown for one quarter, and so
forth.

Given no arbitrage, the price of each firm is its share of future dividends times their

present value,

[e.9]

Pi=Y st P (C.11)
n=1
and the one-period return is given by end-of-period price plus the share of the aggregate
dividend received at the end of the period, divided by beginning of period price:
i Pl + sty Din

= 7 . (C.12)




To construct equity risk factors, we must calculate the book value of equity. We con-
sider book value of equity as a measure of fundamental value that does not account for
time-varying discount rates. Accordingly, we calculate book value as the present value of
future dividends discounted using the unconditional average market risk premium. We
then calculate investment as quarterly changes in book value, we calculate profitability as
the dividends currently earned by the firm dividend by lagged book value of equity, and we
calculate book-to-market as the book value divided by market value of equity. In addition,
we calculate momentum as the running one-year return (skipping the most recent month),

and we calculate betas as rolling three year betas.

D. Results in Simulated Data

To study the cross-section of stock returns, we run 1,000 simulations of 700 quarters
of artificial data. For each simulation, we sort stocks at each period into equal-weighted
quintile portfolios based on profitability, investment, book-to-market, market capitalization,
and market beta. We then construct risk factors as long short portfolios based on the first
and fifth quintile. For each simulation, we run CAPM regressions and calculate median
intercepts and parameter estimates across the simulations. We also calculate the duration
of each factor as the difference between the duration of the long and the short leg of the
factor. When calculating the duration of the individual firms, we only consider the following
100 quarters of cash flows — for practical reasons, our firms never die, but when calculating
the duration of the cash flows we want to ensure that we are not including the cash flows
of its subsequent life-cycle, which we would do if looking at all future cash flows. The

duration of a firm’s cash flows is thus

Y'P
D=—— C.13
eP’ ( )
where Y’ = [0.25, ..., 25] is a column vector of quarters, P is a row vector of present values

of dividends, and €’ is a column vector with 1/100 in each column.

The CAPM alphas are reported in Table A5. The risk factors based on valuation,
profitability, investment, and beta all have positive CAPM alpha of 0.2 to 0.6% per month.
Accordingly, our model of the downward sloping equity term structure is able to explain
the well known CAPM alpha associated with these characteristics.

The factors have positive alpha because they are all long short-duration stocks and
short long-duration stocks. Indeed, as can be seen in the bottom row of Table A5, the

duration is between -3 and -14 for the above-mentioned factors. This difference between



the duration of the long and the short leg of the factors is large given that we only use 25
years to calculate duration.

In our model, the links between the risk factors and duration are as follows:

e Profitability: In our setting, a high profitability firm has high dividends relative to
book value, which summarizes the total value of future dividends. If dividends are
high today relative to future dividends, it means that the firm is on the peak of its

life cycle and therefore has relatively short duration.

o Investment: A high investment firm has large growth in book value, meaning it has
a large growth in the value of future dividends. Firms with large growth in the value
of future dividends are usually in the beginning of their life cycle, and are therefore

long-duration stocks.

e Book-to-market (value): A value firm has a low price of future dividends, meaning
their discount rate is high. Discount rates are higher for short-duration claims because
the equity term structure is downward sloping. Accordingly, value firms tend to have
short cash-flow duration. It is worth noting that value firms have short duration only
because the equity term structure is downward sloping. Had it been upward sloping,
value firms would have had long duration (as long-duration stocks would have had

high discount rates and endogenously become value stocks).

e Size: Small firms have long duration because they are at the beginning of their life-

cycle and are expected to experience a large growth in dividends.

e Low beta: In our model, long-duration stocks have high betas because they are more
exposed to the discount rate shock, €, 41, and the growth rate shock €, ;11 as seen in
equation (C.8) (the loading on the shocks, BY and B, both increase in absolute terms
in maturity n, although B increases non-monotonically). Accordingly, a low-beta

stock tends to be a short-duration stock.

While the Lettau and Wachter (2007) model of a downward sloping term structure is
proposed to explain the value premium, the model appears better suited to explain the
profitability and investment premium for multiple reasons. First, the profit and investment
factors have larger alphas in our model than the value factor. Second, the return to the
profit and investment factors are more directly related to the slope of the equity term
structure. Indeed, in a hypothetical upward sloping model, the profit and investment factors

have negative expected returns, whereas the value factor still has positive expected returns.



The positive expected returns to the value factor remains because the factor now goes long
the long-duration stocks (the book-to-market ratio now identifies the long-duration stocks
as endogenously cheap stocks with high expected returns). In the empirical section, we
take care not to use market prices when estimating duration to avoid this problem of

endogenously identifying firms with high expected returns as short-duration stocks.

Appendix D. Additional Tests for the Duration Factor

In this section, we subject our duration factor to the test of new factors from Feng,
Giglio, and Xiu (FGX, 2020). This test is designed specifically to provide a “conservative
and productive way to screen new factors and bring discipline to the ‘zoo of factors™
(p. 1359).

FGX use a two-pass (or “double-selection”) lasso to select a set of control factors h, € RP
against which a proposed new factor g; € R is compared. With these control factors in
hand, a cross-sectional regression is used to estimate the loading A, on the new factor in
the stochastic discount factor, which corresponds to its usefulness in explaining the cross
section over and above the benchmark factors h;.! We set g; = rPUT and for the “zoo” of
possible control factors, we use FGX’s library of 150 risk factors (excluding the two factors
for which there are multiple years of missing data), along with our small-minus-big factor
constructed from duration-sorted portfolios as in (6).> For test assets, we use the same
750 characteristics-sorted portfolios used by FGX. Their risk factors and test assets are
available monthly from July 1976 through December 2017, so we restrict attention to this

sample period for rPYE so that our estimation follows theirs as closely as possible.?

!The cross-sectional regression is 7 = ¢, + 6&/(7}, he)\n + 6()\\/(rt, gt)Ag +u, where r, € R™ is a vector
of test-asset returns, 7 is its time-series average, and ¢, € R™ is a ones vector. For further details on the
test and its interpretation, see FGX (2020).

2We use our smb factor as a possible control so as to isolate the contribution of our main factor rPY %,
as the FGX procedure is meant to “focus on the evaluation of a new factor, rather than testing or estimating
an entire reduced-form asset pricing model” (p. 1332). In our case, the double-selection lasso selects 117
factors to include as controls. And the two excluded control factors are the dividend initiation and dividend
omission factors; we exclude them because the test drops any observations with at least one missing factor
return, so the inclusion of these two factors effectively shortens the test’s sample size by multiple years.

3We thank the authors for making their data available, and for their assistance with the code used to

implement their estimation procedure.



Table A8 presents estimation results for Apyr. This loading corresponds to the es-
timated average excess return, in basis points (bps) per month, for a portfolio with a
univariate beta with respect to r?YF normalized to 1, following FGX. The first column
shows that in the baseline double-selection test, the duration factor has a risk premium
Apur of 235.3 bps per month (¢ = 3.05), suggesting that the factor provides highly sig-
nificant explanatory power. For comparison, only two other factors considered in FGX’s
post-2012 empirical application — the profit factors of Fama and French (2015) and Hou,
Xue, and Zhang (2015) — have higher t-statistics, but they have lower point estimates of
A = 160 and 77 bps per month, respectively.*

The second column in Table A8 presents results for Apy g estimated using only the three
Fama and French (1993) factors (FF3) as controls. In this case the estimate for Apyp is
smaller but more precise. The third column includes all 149 possible factors as controls,
and shows that the OLS estimate of Apyp remains quite high and significant at the 1%
level. In both the FF3 and no-selection cases, the duration factor outperforms all post-2012
factors considered by FGX, in terms of both its point estimate and t-statistic.

These results provide evidence that the duration factor contributes significantly in ex-
plaining returns in the cross-section, even in a conservative high-dimensional test. How
might this finding arise, given that the duration factor is constructed using sorts based
on a linear combination of characteristics used for previously proposed factors? At a sta-
tistical level, the portfolio construction using 2x3 sorts means that the duration factor
return is not mechanically spanned by other factors’ returns. At a deeper level, though,
the duration factor appears to exploit an economically useful combination of the underlying

characteristics used in its construction.

Appendix E. Explaining Anomalies with the Duration

Factor

In this section, we study if our duration factor can explain other risk factors than the
ones in Table 4. To this end, we use 54 factors based on the characteristics studied in
Freyberger, Neuhierl, and Weber (2020).> We consider all the characteristics studied in

that paper, except the characteristics already considered above, as well as the momentum

4FGX evaluate only factors proposed post-2012 in their main analysis.
®We use the dataset constructed by Freyberger, Neuhierl, and Weber (2020), and we thank the authors

for sharing their data.



characteristics, given that momentum is not plausibly related to or explained by a funda-
mental characteristic like cash-flow duration. We then discard all the factors that do not
have significant CAPM alpha, resulting in a total of 25 factors.® We then study how well
our duration factor explains these anomalies.

Table A6 shows the performance of the 25 CAPM anomalies in our three-factor model,
which includes the market, our size factor, and our duration factor. For each anomaly,
we report the alpha in monthly percent along with the p-value of the hypothesis that the
alpha is statistically insignificant. However, we are considering 25 factors, and some of
these might remain significant by chance, so judging significance simply from the p-values
would result in too many false positives. Instead, we employ the Benjamini and Hochberg
(1995) procedure to account for false discovery arising from multiple testing.” As can be
seen in Table A6, only 7 of the 25 factors remain statistically significant when using the

Benjamini and Hochberg procedure at a nominal false discovery rate of 5%.

Appendix F. The Equity Yield Curve

We next study the book-to-market ratios of long- and short-duration firms. These book-
to-market ratios together constitute the equity yield curve. Indeed, Binsbergen, Hueskes,
Koijen, and Vrugt (2013) define equity yields as the hold-to-maturity return minus hold-
to-maturity growth rates of dividends with different maturities. Similarly, book-to-market
ratios of duration-sorted portfolios measure the future expected return and growth rate of
firms with different cash-flow duration (Vuolteenaho, 2002).

We calculate the level of the equity yield curve as the average log book-to-market ratio

of the four portfolios that constitute the duration factor. Similarly, we calculate the slope

6Many factors only exist among small cap firms and in extreme portfolio sorts, which means they do
not show up when considering Fama and French (1993) portfolios.

"This approach ensures that when testing multiple hypotheses, the false discovery rate, or number of
false positives, are kept at a certain threshold, usually 5%. The approach entails ranking all the p-values
in ascending order and associating them with a critical value that depends on the rank. One then looks for
the highest p-value that is below its critical value, and concludes that all hypotheses with lower p-values are
significant at the desired level. For 5%-level tests, critical values are given by 5% x rank/25. Accordingly,
the critical value for the first hypothesis (the one with the lowest p-value and rank 1) is the Bonferroni
critical value; the critical value for last hypothesis (the one with the highest p-value and rank 25) is the

usual 5% critical value.



of the equity yield curve as the average log book-to-market ratio of the two long-duration
portfolios in the duration factor minus the average log book-to-market ratio of the two
short-duration portfolios in the duration factor.

Figure A4 plots the slope of the equity yield curve. As can be seen from the figure,
the slope is positive in the beginning of the sample. From 1960 and forwards it fluctuates
around zero. These results are consistent with cumulative excess returns to our duration
factor in Figure 4, where the long-duration stocks have high returns in the early sample.

Figure A4 also plots the slope of the Treasury yield curve, measured as the difference
in yields between all outstanding long- and short-duration Treasuries. Because the CRSP
tape of Treasury yields does not start until the 1950s, we create our own estimates of
these yields in the early sample. We define long-duration Treasuries as all Treasuries with
maturity of more than 10 years. We define short-duration Treasuries as all Treasuries with
maturity of less than 5 years.® We value-weight the yields based on the total value of each
outstanding Treasury security.

Panel A of Table A7 shows results from regressions of the slope of the equity yield curve
onto the slope of the bond yield curve. For the full sample, considered in the leftmost
column, the relation is weak. However, both in the early sample, from 1929 to 1974, and
the late sample, from 1995 to 2018, the relation is strong, with R? values of 0.65 and 0.59,
respectively.During the relatively high-inflation period from 1974 to 1995, the correlation
between the slopes is substantially lower, but this is natural as the slope of the equity yield
curve should not be as closely linked to inflation risk premia as the slope of the Treasury
yield curve. These results help validate our measure of the equity yield curve.

If the major risk factors invest in short-duration stocks, the slope of the yield curve
should predict their returns. We test this hypothesis in Panel B of Table A7, which shows
the results of predictive regressions. The dependent variables are the future realized one-
year return to the equity risk factors and the dependent variable are the ex ante level and
slope of the yield curve. We run rolling monthly regressions and use Newey-West standard
errors with 18 lags. As can be seen in the leftmost column of Table A7, the slope of the
yield curve predicts future returns to the duration factor. When the yield curve is more
downward-sloping, short-duration stocks have relatively higher returns and the duration
factor thus has higher returns. The effect is statistically significant. The level of the yield
curve does not predict the return to the duration factor. Similarly, we find that the slope

of the yield curve predicts negatively the return to the value, profit, investment, low-risk,

8We consider this approach instead of looking at the 10-year minus 3-month spread because we want

the duration of the short leg portfolios to mimic each other as much as possible.



and payout factors, although the effect is insignificant for value and investment. The R?
ranges from 0.09 to 0.19. The regressions also include the slope of the bond yield curve,
but this is insignificant when controlling for the equity yield curve.

We next test if the equity yield curve predicts the return to the market portfolio. A
higher level of the equity yield curve should, all else equal, predict a higher return to the
market portfolio over the long run. In addition, if the equity yield curve is more upward
sloping, it suggests that this return is expected to be earned in the more distant future
rather than the near future.” Accordingly, we expect a higher level to predict higher returns
and a more upward sloping curve to predict lower returns over a short horizon (less than
five years).

The results in Panel C of Table A7 are consistent with this conjecture: a higher yield
curve predicts higher returns and a more upward sloping yield curve predicts lower returns.
The effect is strongest, and statistically significant, for the four- and five-year horizons.
The R? is as high as 42% for the five-year return. The slope of the bond yield curve also
predicts returns, but it does so with the opposite sign. This reflects the well-known result in
the bond literature that the slope of the bond yield curve predicts the bond term premium.
Since the market is a long-duration claim, the bond term premium should carry over to
the equity risk premium, which means the slope of the bond term structure should predict
the equity risk premium positively.

In conclusion, the valuation ratios on duration-sorted portfolios constitute an equity
yield curve. The slope of this yield curve is strongly correlated with the slope of the
Treasury yield curve outside a high-inflation period centered around the 1980s. In addition,
it intuitively helps predict the return to individual risk factors and the the timing of the

return to the market portfolio.

9Gormsen (2021) discusses the effect of the slope of the equity yield curve on the return to the market

portfolio.
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Figure A1
Loadings of Expected Growth Rates on Characteristics That Predict Returns: Global Evidence
This figure shows the loading of expected growth rates on characteristics that predict returns. In each country, we
regress the expected growth rates on the below characteristics in multivariate panel regressions. In almost all cases,
the characteristics that predict high also returns predict low expected growth.
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Figure A2

Histogram of Realized Monthly Returns on Dividend Strips
This figure shows a histogram of monthly realized returns on single-stock dividend futures. The figure excludes all

observations where monthly returns are zero. The sample is 2010 to 2019.
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Figure A3
Risk-Adjusted Returns to Corporate Bond Portfolios

This figure reports t-statistics for CAPM alphas for corporate bond portfolios. We sort firms into two groups based on
the median firm characteristic. Within each group, we sort all outstanding corporate bonds into portfolios based on
maturity. Portfolio weights are equal-weighted and rebalanced monthly. We calculate CAPM alpha as the intercept in
a time series regression of monthly excess portfolio returns on the excess market returns. Excess returns are calculated
as returns in excess of a treasury claim with the same maturity. The market return is the equal-weighted return across
all bonds. The sorting is such that the 2-year portfolio, for instance, contains all bonds with maturity between 1 and 2
years. The sample is US firms from 2002 to 2016.
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Figure A4
The Slopes of the Equity and Treasury Yield Curves
This figure shows the time series of the slope of the equity yield curve and the slope of the treasury yield curve. The
slope of the equity yield curve is the log book-to-market ratio of the long-leg of the duration portfolio minus the log
book-to-market ratio of the short-leg of the duration factor. The slope of the treasury yield curve is difference between
the long- and short-duration us treasuries. The equity yield curve is measured on the left hand y-axis and the treasury
yield curve is on the right hand side.
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Table A1
Replicating Chen (2017) without Micro-Cap
This table reports the growth rate for value-sorted portfolios calculated following the method in Chen (2017). Panel
A shows the results in the modern and full sample including all firms. Panel B reports the results excluding micro-cap
(the smallest 20% of firms). Growth firms always grow faster in the modern sample and they also grow faster in the
full sample when excluding micro-cap.

Growth Rates of Portfolios Sorted on Book-to-Market Ratios

Panel A: Replication of original study including all stocks

Modern Sample Full Sample
(growth) (value) (growth) (value)
1 2 3 4 5 1 2 3 4 5
5 years 4% 1% 2% 1% -1% 3% 2% 2% 3% 5%
10 years 4% 2% 1% 1% 1% 3% 2% 2% 2% 3%
15 years 5% 3% 2% 2% 1% 4% 2% 2% 3% 3%

Panel B: Excluding micro-cap (smallest 20%)

Modern Sample Full Sample
(growth) (value) (growth) (value)
2 3 4 5 1 2 3 4 5
5 years 4% 2% 1% 1% -1% 3% 2% 1% 2% 2%
10 years 4% 3% 1% 1% 1% 3% 2% 1% 1% 2%
15 years 5% 4% 2% 2% 1% 4% 2% 2% 2% 2%
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Table A2
Spanning Regressions
This table shows the results of spanning regression with the duration factor on the left-hand side in the Fama and
French (1993) and (2015) model. The CAPM alpha is the intercept in a regression of the risk factor on the excess
return to the market portfolio. We report #-statistics in parentheses under parameter estimates and statistical
significance at the 5% level is marked in bold. The US sample is from 1963 to 2018 and the global sample is from
1990 to 2018.

US Global
DUR DUR DUR DUR
Alpha 0.26 0.08 0.27 0.04
(4.84) 1.97) (4.39) (0.96)
Market -0.30 -0.23 -0.29 -0.18
(23.15) (-21.25) (-20.57) (-13.94)
SMB -0.22 -0.19 -0.13 -0.00
(12.45) (-11.5) (-4.16) (-0.24)
HML 0.6 0.39 0.56 0.26
(34.13) (18.43) (20.61) (8.65)
CMA 0.62 0.52
(19.73) (13.01)
RMW 0.19 0.42
(8.43) (10.57)
R? 0.80 0.88 0.75 0.86
# Of observations 666 666 342 342
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This table reports results from panel regressions with expected return and alphas to single stock dividend futures as
dependent variables. We calculate expected returns as the expected yield to maturity using expected dividends per
share from the IBES database. Alphas are expected returns minus beta times a market risk premium of 5%. Regressions
are annual using end-of-December prices. See Appendix for details on how we calculate expected return and betas. In
the equations below, ¢, i, and m denotes time, firm, and maturity of the strip at time # (measured in years). The data are
from 2010 to 2019. Standard errors reported in parentheses are two-way clustered as specified in the table. Statistical

Table A3
Expected Return and Alpha on Single Stock Dividend Futures: Liquidity Controls

significance is denoted by *** p<0.01, ** p<0.05, * p<0.1

Panel A: Expected returns and alphas

Expected returns: Et[rtiﬁn =(

im
ft

E¢[Dfym] )Um

CAPM alphas: a7t = E[r/] — Bi™ x 5%
Dependent variable Expectedret CAPMalpha Expectedret CAPMalpha Expectedret CAPM alpha
2-year dummy -0.00 -0.01* -0.00 -0.02%* -0.01 -0.02%*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
3-year dummy -0.00 -0.03%** -0.01 -0.03%** -0.01 -0.03***
(0.00) (0.01) (0.01) (0.01) 0.01) (0.01)
4-year dummy -0.02%** -0.05%** -0.03%** -0.05%** -0.02%** -0.05%**
(0.00) (0.01) (0.00) (0.01) (0.00) (0.01)
Volume -0.01 -0.00 0.07** 0.05
(0.02) (0.02) (0.02) (0.03)
Notional -0.04%* -0.02* -0.09%** -0.07**
(0.01) (0.01) (0.02) (0.02)
Observations 0.09%*** 0.09%** 0.11%%* 0.10%** 0.11%** 0.10%**
R-squared (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Fixed effect
Cluster 1,236 1,236 1,236 1,236 1,236 1,236
Weight 0.10 0.10 0.12 0.11 0.15 0.13
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Table

A4

Expected Return and Alpha on Single Stock Dividend Futures: Firm-level Fixed Effects

This table reports results from panel regressions with expected return and alphas to single stock dividend futures as
dependent variables. We calculate expected returns as the expected yield to maturity using expected dividends per
share from the IBES database. Alphas are expected returns minus beta times a market risk premium of 5%. Regressions
are annual using end-of-December prices. See Appendix for details on how we calculate expected return and betas.
The cash-flow duration characteristic is standardized by the cross-sectional standard deviation. In the equations below,
t, i, and m denotes time, firm, and maturity of the strip at time ¢ (measured in years). The data are from 2010 to 2019.
Standard errors reported in parentheses are two-way clustered as specified in the table. Statistical significance is

denoted by *** p<0.01, ** p<0.05, * p<0.1

Panel A: Expected returns and alphas

Expected returns:  E, [r}, =(

im _ im]_ pim 0
fem = E¢ [rt+m] v X 5%

CAPM alphas:

Dependent variable Expectedret Expectedret Expectedret CAPMalpha CAPMalpha CAPM beta
2-year dummy 0.00 -0.00 -0.01** -0.01%** 0.46%**
(0.01) (0.00) (0.01) (0.01) (0.12)
3-year dummy -0.00 -0.00 -0.03%** -0.03%** 0.82%**
(0.00) (0.00) (0.01) (0.01) (0.11)
4-year dummy -0.01 -0.01 -0.03%** -0.03*** 0.78***
(0.01) (0.01) (0.01) (0.01) (0.14)
CAPM beta of strip (8*™) 0.00 0.00
(0.00) (0.00)
CAPM beta of firm (%) 0.02 0.02
(0.03) (0.03)
Cash-flow duration of firm -0.00 -0.00 -0.00 -0.01
(higher = shorter duration) (0.01) (0.01) (0.01) (0.01)
Observations 1,219 1,229 1,219 1,229 1,229 1,702
R-squared 0.31 0.31 0.31 0.34 0.34 0.58
Fixed effect Date/ Firm  Date/ Firm  Date/ Firm  Date/ Firm  Date/ Firm  Date/Firm
Cluster Date/Firm  Date/Firm  Date/Firm  Date/Firm  Date/Firm  Date/Firm
Weight None None None None Notional None

. 1
EelDipm] |
fom
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Table AS

Theory: Equity Risk Factors in a Model with a Downward Sloping Equity Term Structure

This table show the CAPM alpha and duration of equity risk factors in model. The CAPM alpha is the intercept in a
regression of return to the risk factor on the market portfolio. The duration measures the difference in the duration of
the long- and the short-leg of the factor. The duration of the long- and the short leg is the equal weighted average of
the firms in the portfolio. The duration of an individual firm is the value-weighted years to maturity of the firm’s
expected cash flows over the subsequent 25 years. The table shows the median estimates of 1000 simulations of 700

quarters of data. Alphas are in monthly percent.

HML
Long-leg: High B/M
Short-leg: Low B/M
CAPM alpha 0.22
Duration (years) -3.5

RMW

High profit
Low profit

0.58
-14.2

CMA

Low investment
High investment

0.42
-7.5

Low Risk

Low beta
High beta

0.38
-5.7

DUR

High duration
Low duration

-0.60
14.6
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Table A6
Explaining CAPM Anomalies with the Duration Factor
This table studies the performance of 25 CAPM anomalies in our three-factor model. The three factors are the market
portfolio, our duration portfolio, and our small-minus-big portfolio. The table reports the three-factor alpha and its p-
value implied by the usual #-test for insignificance. The table also reports the cutoff for a 5% false discovery rate under
the Benjamini and Hochberg (1995) procedure. We mark in bold the anomalies that are significant under a 5% false
discovery rate. The sample is US firms from 1963-2015.

p-value for three-factor Cutoff under a 5% false
Anomaly Alpha alpha discovery rate
Net operating assets -0.29 0.0000 0.0020
Operating accruals -0.26 0.0002 0.0040
Lagged turnover 0.24 0.0011 0.0060
Investment -0.19 0.0039 0.0080
Sales to price 0.29 0.0062 0.0100
Earnings to price -0.17 0.0108 0.0120
Total assets 0.14 0.0175 0.0140
Capital turnover -0.16 0.0267 0.0160
Capital turnover -0.12 0.0309 0.0180
Maximum return 0.23 0.0533 0.0200
Idiosyncratic volatility 0.14 0.0547 0.0220
Rel to high 0.15 0.0567 0.0240
Changein PPE -0.14 0.0628 0.0260
Adjusted book to market 0.14 0.0632 0.0280
Net operating assets -0.07 0.3146 0.0300
Net operating assets -0.06 0.4165 0.0320
Tobins Q -0.09 0.4227 0.0340
Bid ask spread -0.07 0.4277 0.0360
Sales to price -0.06 0.4385 0.0380
Assets to market cap -0.07 0.4761 0.0400
Bid ask spread -0.07 0.4803 0.0420
Earnings to price 0.06 0.4908 0.0440
Maximum return 0.03 0.5680 0.0460
Asset to market cap 0.06 0.6183 0.0480
Free CF 0.01 0.8792 0.0500
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Table A7
The Equity Yield Curve

Panel A reports the results of regressions of the slope of the equity yield curve onto the slope of the bond yield curve.
Panel B and C report results of predictive regressions. We regress the future realized returns of different risk factors
on the ex ante level and slope of the equity yield curve. The level is the equal weighted log book-to-market ratio of
the four sub portfolios in the duration factor, and the slope is the average log book-to-market ratio of the long-leg of
the two long-duration portfolios in the duration factor minus the average log book-to-market ratio of the two short-
duration portfolios in the duration factor. In Panel B, we run monthly regressions of annualized returns. In Panel C,
we run monthly regressions with varying holding horizon. We report ¢-statistics based on Newey West standard errors
in parentheses under parameter estimates and statistical significance at the five percent level is marked in bold.

Panel A: Equity and bond vyield curves

Dependent variable: slope of equity yield curve

Sample period: Full sample  1929-1974  1974-1995  1995-2018

Slope of bond yield curve 28.44 47.77 12.53 20.25
(5.22) (9.50) 2.11) (4.38)

Adjusted-R? 0.22 0.63 0.09 0.44

# of observations 1086 546 252 288

Panel B: Predicting risk factors

DUR HML RMW CMA  Low Risk Payout
. -0.08 0.03 -0.07 0.02 -0.09 -0.04
Level of equity yield curve
(-1.65) (0.48) (-1.80) (0.42) (-1.43) (-1.59)
Slope of equity yield curve -0.26 -0.23 -0.15 -0.13 -0.34 -0.13
(-4.23) (-2.83) (-2.64) (-2.25) (-4.38) (-2.62)
Slope of bond yield curve 1.22 1.74 0.98 1.29 1.24 1.10
(0.59) (1.18) (0.84) (1.14) (0.45) (0.59)
Adjusted—R2 0.18 0.13 0.12 0.09 0.19 0.09
# of observations 666 666 666 666 666 666
Panel C: Predicting market returns
MKT MKT MKT MKT MKT
Horizon 1 year 2 years 3 years 4 years 5 years
Level of equity vield curve 0.16 0.30 0.39 0.59 0.94
(2.49) (2.47) (2.17) (2.46) (3.18)
Slope of equity yield curve 0.10 0.00 -0.32 -0.64 -0.81
(1.38) (-0.01) (-2.05) (-3.58) (-3.37)
Slope of bond yield curve 1.55 8.85 19.66 30.86 37.35
(0.79) (2.21) (4.88) (7.00) (4.86)
Adjusted-R? 0.09 0.16 0.25 0.37 0.42
# of observations 666 654 642 630 618
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Table A8
Model Selection Tests for the Duration Factor

This table reports the results from the Feng, Giglio, and Xiu (FGX, 2020) machine-learning test for the contribution
of the duration factor in explaining the cross-section. The test assets are the same 750 portfolios used by FGX. The
set of potential control factors include (i) the 150 factors used by FGX, with the exception of the two factors for which
there are multiple years of missing data, and (ii) our small-minus-big factor constructed from our size-duration sorts.
Each entry in the first row is a separate estimate for Apur, the loading on the duration factor in the stochastic discount
factor, estimated from a cross-sectional regression. The first column uses the FGX double-selection lasso estimator to
select the control factors in the regression. The second column uses only the three Fama and French (1993) factors as
controls. The third column uses all 149 control factors without any dimension reduction. Estimates are scaled to
correspond to an average excess return (in bps per month) for a portfolio with a unit univariate beta with respect to
the duration factor and a zero univariate beta with respect to the control factors. z-statistics in parentheses are calculated
using FGX’s inference procedure, and statistical significance at the 5% level is marked in bold. The sample is 1976-
2017, matching the availability of test-asset and factor returns used by FGX.

Feng, Giglio, and Xiu (2020) Factor Zoo Tests for Duration Factor

FGX Double-Selection FF3 Controls No Selection, OLS
Apur (bps) 235.3 83.6 331.1
(3.05) (3.32) (3.25)
# of control factors 117 3 149
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Table A9
Alternative Methods for Constructing Duration Characteristic

This table shows the results of factor regressions in the US sample. Each factor is on six portfolios based on ex ante
size and the characteristic the portfolio is sorted on. The breakpoints are the median market capitalization and the 30"
and 70" percentile of duration. Portfolio weights are value-weighted and rebalanced monthly and the breakpoints are
refreshed each June and based on NYSE firms. Each factor is long 50 cent in the two high-characteristic portfolios
and short 50 cent in each of the two low-characteristic portfolios, except the SMB factor, which is long the small
duration-sorted portfolios and short the large duration-sorted portfolios. Three-factor alpha is in the intercept in a
regression of the given equity risk factor on the market portfolio, the duration factor, and the SMB factor. CAPM
alpha is the intercept in a regression of the risk factor on the excess return to the market portfolio. We report #-statistics
in parentheses under parameter estimates and statistical significance at the 5% level is marked in bold. The sample is
US from 1963 to 2019. Panel A shows results from regressions where the duration characteristics is an equal-weighted
average of the profit, low-investment, low-beta, and payout characteristic. Panel B shows results from regressions
where the duration characteristics is an equal-weighted average of the book-to-market, profit, low-investment, low-
beta, and payout characteristic.

Panel A: Equal-weighted average

Factor CAPM model Three-factor model
Acapm Bearm R? Apyr Buke Bsmb Bpur R? LTG #obs
- - o o,
HML 0.39 0.16 0.03 0.05 0.15 0.36 0.69 0.37 9.5% 678
3.75) (-6.73) (-0.54) (5.58) (10.84) (17.67)
- - - o,
RMW 0.32 0.11 0.18 0.10 0.13 0.09 046 0.36 5.1% 678
(387)  (-5.93) (140)  (620)  (-3.68)  (15.22)
- - 0,
CMA 0.37 0.18 0.15 0.07 0.04 0.24 0.47 0.43 6.7% 678
(5.19) (-10.87) (1.14) (2.00) (10.81) (17.81)
- - - - - 0,
BETA 0.49 0.73 0.59 0.01 0.22 0.08 0.99 0.84 7.9% 678
@21)  (-27.87) (-0.16)  (-10.62)  (:3.15)  (32.51)
- - - o,
PAYOUT 0.26 0.30 0.26 0.00 0.05 0.00 0.50 0.66 7.2% 678
(3.86)  (-19.89) (-0.04)  (332)  (-0.01)  (22.54)

Panel B: Including book-to-market

Factor CAPM model Three-factor model
Acapm Beapm R? AThree Buke Bsmp Bpur R? LTG  #obs
HML 0.39 -0.16 0.50 -0.11 0.20 0.31 0.77 0.56 -9.5% 678
(3.75) (-6.73) (-151)  (9.30)  (11.90)  (27.25)
RMW 0.32 -0.11 0.52 0.18 0.06 -0.17 031 0.27 -5.1% 678
(3.87) (-5.93) 0.00 (2.45) (2.96) (-6.34)  (11.06)
CMA 0.37 -0.18 0.70 0.06 0.04 0.20 047 0.52 -6.7% 678
(5.19) (-10.87)  0.00 (1.04) (2.80) (1024)  (22.53)
BETA 0.49 -0.73 0.57 0.07 -0.29 -0.20 0.83 0.82 -7.9% 678
(4.21) (-27.87) 0.93)  (-13.63)  (-7.72)  (29.59)
- - - - o,
PAYOUT 0.26 0.30 0.52 0.04 0.08 0.06 042 0.64 7.2% 678
(3.86)  (-19.89) 072)  (-5.56)  (-329) (21.22)
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Table A10
Expected CAPM Alpha for Single Stock Dividend Futures (Winsorized Betas)
This table reports the expected average CAPM alpha for portfolios of dividend strips on different firms. At the end of
December, we assign all dividend strips to a long- or short-duration portfolio based on the cash-flow duration of the
underlying firm. Firms are categorized as long (short) duration if the cash-flow duration is above (below) the median
of all the firms on the exchange where the firm is listed. We then calculate a pooled average CAPM alpha for all strips
of a given maturity in a given portfolio. Betas are winsorized by maturity at the 5% level. Standard errors reported
below the estimates are clustered by firm and date. See Appendix for details on how we calculate CAPM alphas. The

data are from 2010 to 2019.

Maturity of Strip
1 year 2 year 3 year 4 year Average
Short-duration firms 0.081**  0.071**  0.050%**  (0.053** 0.069***
(0.026) (0.022) (0.014)  (0.0099) (0.019)
Long-duration firms 0.083***  0.067***  (0.047***  (0.027*** 0.064***
(0.0088)  (0.0078)  (0.0075)  (0.0070) (0.0062)
Average across firms 0.082%**  0.068***  0.048***  0.030%**

0.012)  (0.010)  (0.0075)  (0.0069)
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Table A11
Expected Return and Alpha on Single Stock Dividend Futures (Winsorized Betas)

This table reports results from panel regressions with expected return and alphas to single stock dividend futures as
dependent variables. We calculate expected returns as the expected yield to maturity using expected dividends per
share from the IBES database. Alphas are expected returns minus beta times a market risk premium of 5%. Betas are
winsorized by maturity at the 5% level. Regressions are annual using end-of-December prices. See Appendix for
details on how we calculate expected return and betas. The cash-flow duration characteristic is standardized by the
cross-sectional standard deviation. In the equations below, ¢ i, and m denotes time, firm, and maturity of the strip at
time ¢ (measured in years). The data are from 2010 to 2019. Standard errors reported in parentheses are two-way
clustered as specified in the table. Statistical significance is denoted by *** p<0.01, ** p<0.05, * p<0.1

Panel A: Expected returns and alphas

. B [Di ] 1/m
Expected returns: E, [rt‘ﬁn = (M)

. R
CAPM alphas:  a;i, = Ee[rm] = Braeuricy X 5%
Dependent variable Expectedret Expectedret Expectedret CAPMalpha CAPMalpha CAPM beta
2-year dummy -0.00 -0.00 -0.02 -0.02* 0.55*
(0.01) (0.01) (0.01) (0.01) (0.29)
3-year dummy -0.00 -0.01 -0.04%** -0.04%** 1.32%**
(0.00) (0.00) (0.01) (0.01) (0.27)
4-year dummy -0.02%** -0.02%** -0.05%** -0.05%** 1.14%%%*
(0.00) (0.00) (0.01) (0.01) (0.32)
CAPM beta of strip (8*™) 0.00%** 0.00%**
(0.00) (0.00)
CAPM beta of firm (%) 0.04%* 0.04** 1.76%*
(0.02) (0.02) (0.58)
Cash-flow duration of firm -0.00 -0.00 0.01 0.00
(higher = shorter duration) (0.00) (0.00) (0.01) (0.01)
Observations 1,226 1,236 1,226 1,236 1,236 1,699
R-squared 0.13 0.10 0.14 0.10 0.12 0.20
Fixed effect Date/Cur Date/Cur Date/Cur Date/Cur Date/Cur Date/Cur
Cluster Date/Firm Date/Firm Date/Firm Date/Firm Date/Firm Date/Firm
Weight None None None None Notional None
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Table 12
Realized Return and Alpha on the Annual Horizon for Single Stock Dividend Futures (Winsorized
Betas)

This table reports results from panel regressions with realized return and alphas to single stock dividend futures as
dependent variables. A single stock dividend future is the price for the dividend that is paid out in a given year by a
given firm. We calculate realized annual returns for each calendar year. We calculate realized alpha as the realized
returns minus the product of the realized market return and the beta of the strip. The beta of the strip is estimated in
first-stage regressions (see Appendix A for details). The betas as winsorized by maturity at the 5% level. The cash-
flow duration characteristic is standardized by the cross-sectional standard deviation. In the equations below, ¢, i, and
m denotes time, firm, and maturity of the strip at time ¢ (measured in years). The data are from 2010 to 2019. Standard
errors reported in parentheses are two-way clustered as specified in the table. Statistical significance is denoted by
*x% p<0.01, ** p<0.05, * p<0.1

Panel C: Realizations and firm characteristics

Dependent variable Realized Realized log- Realized Realized Realized log- Realized log-
returns returns alpha alpha alpha alpha
2-year dummy 0.0010 -0.0013 -0.041 -0.043 -0.040 -0.040
(0.019) (0.016) (0.034) (0.031) (0.033) (0.029)
3-year dummy 0.0027 -0.0066 -0.11 -0.11 -0.12% -0.12*
(0.033) (0.029) (0.064) (0.064) (0.063) (0.064)
4-year dummy -0.022 -0.038 -0.11%* -0.12%* -0.15% -0.16*
(0.035) (0.033) (0.056) (0.061) (0.074) (0.078)
Cash-flow duration of firm 0.0062 0.011 0.033 0.035 0.040%* 0.040**
(higher = shorter duration) (0.015) (0.013) (0.019) (0.020) (0.014) (0.014)
Observations 1,473 1,464 1,473 1,473 1,464 1,464
R-squared 0.045 0.039 0.064 0.072 0.066 0.069
Fixed effect Date/currency  Date/currency  Date/currency  Date/currency  Date/currency  Date/currency
Cluster Date/Firm Date/Firm Date/Firm Date/Firm Date/Firm Date/Firm
Weight None None None Notional None Notional
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