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Problems
Day 1
Problem 1. Determine all real numbers α such that, for every positive integer n, the

integer
tαu ` t2αu ` ¨ ¨ ¨ ` tnαu

is a multiple of n. (Note that tzu denotes the greatest integer less than or equal to z. For
example, t´πu “ ´4 and t2u “ t2.9u “ 2.)

(Colombia)
Problem 2. Determine all pairs pa, bq of positive integers for which there exist positive

integers g and N such that
gcdpan ` b, bn ` aq “ g

holds for all integers n ě N . (Note that gcdpx, yq denotes the greatest common divisor of
integers x and y.)

(Indonesia)
Problem 3. Let a1, a2, a3, . . . be an infinite sequence of positive integers, and let N be

a positive integer. Suppose that, for each n ą N , an is equal to the number of times an´1

appears in the list a1, a2, . . . , an´1.

Prove that at least one of the sequences a1, a3, a5, . . . and a2, a4, a6, . . . is eventually periodic.

(An infinite sequence b1, b2, b3, . . . is eventually periodic if there exist positive integers p and M
such that bm`p “ bm for all m ě M .)

(Australia)
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Day 2
Problem 4. Let ABC be a triangle with AB ă AC ă BC. Let the incentre and incircle

of triangle ABC be I and ω, respectively. Let X be the point on line BC different from C
such that the line through X parallel to AC is tangent to ω. Similarly, let Y be the point on
line BC different from B such that the line through Y parallel to AB is tangent to ω. Let AI
intersect the circumcircle of triangle ABC again at P ‰ A. Let K and L be the midpoints
of AC and AB, respectively.

Prove that =KIL ` =Y PX “ 180˝.
(Poland)

Problem 5. Turbo the snail plays a game on a board with 2024 rows and 2023 columns.
There are hidden monsters in 2022 of the cells. Initially, Turbo does not know where any of
the monsters are, but he knows that there is exactly one monster in each row except the first
row and the last row, and that each column contains at most one monster.

Turbo makes a series of attempts to go from the first row to the last row. On each attempt, he
chooses to start on any cell in the first row, then repeatedly moves to an adjacent cell sharing
a common side. (He is allowed to return to a previously visited cell.) If he reaches a cell
with a monster, his attempt ends and he is transported back to the first row to start a new
attempt. The monsters do not move, and Turbo remembers whether or not each cell he has
visited contains a monster. If he reaches any cell in the last row, his attempt ends and the
game is over.

Determine the minimum value of n for which Turbo has a strategy that guarantees reaching
the last row on the nth attempt or earlier, regardless of the locations of the monsters.

(Hong Kong)
Problem 6. Let Q be the set of rational numbers. A function f : Q Ñ Q is called

aquaesulian if the following property holds: for every x, y P Q,

fpx ` fpyqq “ fpxq ` y or fpfpxq ` yq “ x ` fpyq.

Show that there exists an integer c such that for any aquaesulian function f there are at most
c different rational numbers of the form fprq ` fp´rq for some rational number r, and find the
smallest possible value of c.

(Japan)
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Solutions

Day 1

Problem 1. Determine all real numbers α such that, for every positive integer n, the
integer

tαu ` t2αu ` ¨ ¨ ¨ ` tnαu

is a multiple of n. (Note that tzu denotes the greatest integer less than or equal to z. For
example, t´πu “ ´4 and t2u “ t2.9u “ 2.)

(Colombia)

Answer: All even integers satisfy the condition of the problem and no other real number α
does so.

Solution 1. First we will show that even integers satisfy the condition. If α “ 2m where m
is an integer then

tαu ` t2αu ` ¨ ¨ ¨ ` tnαu “ 2m ` 4m ` ¨ ¨ ¨ ` 2mn “ mnpn ` 1q

which is a multiple of n.

Now we will show that they are the only real numbers satisfying the conditions of the
problem. Let α “ k ` ϵ where k is an integer and 0 ď ϵ ă 1. Then the number

tαu ` t2αu ` ¨ ¨ ¨ ` tnαu “ k ` tϵu ` 2k ` t2ϵu ` ¨ ¨ ¨ ` nk ` tnϵu

“
knpn ` 1q

2
` tϵu ` t2ϵu ` ¨ ¨ ¨ ` tnϵu

has to be a multiple of n. We consider two cases based on the parity of k.

Case 1: k is even.

Then knpn`1q

2
is always a multiple of n. Thus

tϵu ` t2ϵu ` ¨ ¨ ¨ ` tnϵu

also has to be a multiple of n.
We will prove that tnϵu “ 0 for every positive integer n by strong induction. The base case

n “ 1 follows from the fact that 0 ď ϵ ă 1. Let us suppose that tmϵu “ 0 for every 1 ď m ă n.
Then the number

tϵu ` t2ϵu ` ¨ ¨ ¨ ` tnϵu “ tnϵu

has to be a multiple of n. As 0 ď ϵ ă 1 then 0 ď nϵ ă n, which means that the number tnϵu
has to be equal to 0.

The equality tnϵu “ 0 implies 0 ď ϵ ă 1{n. Since this has to happen for all n, we conclude
that ϵ “ 0 and then α is an even integer.
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Case 2: k is odd.
We will prove that tnϵu “ n ´ 1 for every natural number n by strong induction. The base

case n “ 1 again follows from the fact that 0 ď ϵ ă 1. Let us suppose that tmϵu “ m ´ 1 for
every 1 ď m ă n. We need the number

knpn ` 1q

2
` tϵu ` t2ϵu ` ¨ ¨ ¨ ` tnϵu “

knpn ` 1q

2
` 0 ` 1 ` ¨ ¨ ¨ ` pn ´ 2q ` tnϵu

“
knpn ` 1q

2
`

pn ´ 2qpn ´ 1q

2
` tnϵu

“
k ` 1

2
n2

`
k ´ 3

2
n ` 1 ` tnϵu

to be a multiple of n. As k is odd, we need 1 ` tnϵu to be a multiple of n. Again, as 0 ď ϵ ă 1
then 0 ď nϵ ă n, so tnϵu “ n ´ 1 as we wanted.

This implies that 1 ´ 1
n

ď ϵ ă 1 for all n which is absurd. So there are no other solutions
in this case.

Solution 2. As in Solution 1 we check that for even integers the condition is satisfied. Then,
without loss of generality we can assume 0 ď α ă 2. We set Sn “ tαu ` t2αu ` ¨ ¨ ¨ ` tnαu.

Notice that

Sn ” 0 pmod nq (1)
Sn ” Sn ´ Sn´1 “ tnαu pmod n ´ 1q (2)

Since gcdpn, n ´ 1q “ 1, (1) and (2) imply that

Sn ” ntnαu pmod npn ´ 1qq. (3)

In addition,

0 ď ntnαu ´ Sn “

n
ÿ

k“1

´

tnαu ´ tkαu

¯

ă

n
ÿ

k“1

´

nα ´ kα ` 1
¯

“
npn ´ 1q

2
α ` n. (4)

For n large enough, the RHS of (4) is less than npn ´ 1q. Then (3) forces

0 “ Sn ´ ntnαu “

n
ÿ

k“1

´

tnαu ´ tkαu

¯

(5)

for n large enough.
Since tnαu ´ tkαu ě 0 for 1 ď k ď n, we get from (5) that, for all n large enough, all these

inequalities are equalities. In particular tαu “ tnαu for all n large enough, which is absurd
unless α “ 0.

Comment. An alternative ending to the previous solution is as follows.
By definition we have Sn ď αnpn`1q

2 , on the other hand (5) implies Sn ě αn2 ´ n for all n large
enough, so α “ 0.
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Solution 3. As in other solutions, without loss of generality we may assume that 0 ď α ă 2.
Even integers satisfy the condition, so we assume 0 ă α ă 2 and we will derive a contradiction.

By induction on n, we will simultaneously show that

tαu ` t2αu ` ¨ ¨ ¨ ` tnαu “ n2, (6)

and
2n ´ 1

n
ď α ă 2. (7)

The base case is n “ 1: If α ă 1, consider m “
P

1
α

T

ą 1, then

tαu ` t2αu ` ¨ ¨ ¨ ` tmαu “ 1

is not a multiple of m, so we deduce (7). Hence, tαu “ 1 and (6) follows.
For the induction step: assume the induction hypothesis to be true for n, then by (7)

2n ` 1 ´
1

n
ď pn ` 1qα ă 2n ` 2.

Hence,

n2
` 2n ď tαu ` t2αu ` ¨ ¨ ¨ ` tnαu ` tpn ` 1qαu “ n2

` tpn ` 1qαu ă n2
` 2n ` 2.

So, necessarily tpn ` 1qαu “ 2n ` 1 and

tαu ` t2αu ` ¨ ¨ ¨ ` tnαu ` tpn ` 1qαu “ pn ` 1q
2

in order to obtain a multiple of n ` 1. These two equalities give (6) and (7) respectively.
Finally, we notice that condition (7) being true for all n gives a contradiction.

Solution 4. As in other solutions without loss of generality we will assume that 0 ă α ă 2
and derive a contradiction. For each n, we define

bn “
tαu ` t2αu ` ¨ ¨ ¨ ` tnαu

n
,

which is a nonnegative integer by the problem condition and our assumption. Note that

tpn ` 1qαu ě tαu , t2αu , . . . , tnαu and tpn ` 1qαu ą tαu

for all n ą 1
α
. It follows that bn`1 ą bn ùñ bn`1 ě bn ` 1 for n ą 1

α
. Thus, for all such n,

bn ě n ` C

where C is a fixed integer. On the other hand, the definition of bn gives

bn “
tαu ` t2αu ` ¨ ¨ ¨ ` tnαu

n
ď

α ` 2α ` ¨ ¨ ¨ ` nα

n
“

α

2
pn ` 1q,

which is a contradiction for sufficiently large n.
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Solution 5. First consider the case in which α “
p
q

is a rational number with p, q P Z, q ą 0

and gcdpp, qq “ 1. We decompose a real number x “ txu ` txu as a sum of its integer and
fractional parts.

Let us consider n “ kq with k P N, then

kq | Skq “

kq
ÿ

k“1

tkαu “

kq
ÿ

k“1

pkα ´ tkαuq “
kqpkq ` 1q

2
α ´ k

qpq ´ 1q

2q
“

k

2
pkqp ` p ´ q ` 1q.

In particular, 2q | pkqp ` p ´ q ` 1q for all k P N. Thus, 2 | p and 2q | p ´ q ` 1. Hence,
p “ q ´ 1 ` 2qm for some m P Z. Now, n “ 2 gives S2 “ 2m ` 4m `

Y

2pq´1q

q

]

, which is not a
multiple of 2 unless q “ 1. So the only rational numbers that can satisfy the condition of the
problem are the even integers. As in previous solutions, we check that they do satisfy it.

Finally, for irrational α we compare S2n and S2n`2 to get:

2 | S2n`2 ´ S2n “ tp2n ` 2qαu ` tp2n ` 1qαu ” tp2n ` 2qtαuu ` tp2n ` 1qtαuu ` tαu pmod 2q

for all n P N. But the Equidistribution Theorem (the sequence α, 2α, 3α, . . . mod 1 is
uniformly distributed on r0, 1q when α is an irrational number) implies that we can find an n
such that the two numbers tp2n ` 2qtαuu and tp2n ` 1qtαuu have different parity (for even tαu)
or the same parity (for odd tαu), so no irrational α satisfies the condition of the problem.
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Problem 2. Determine all pairs pa, bq of positive integers for which there exist positive
integers g and N such that

gcdpan ` b, bn ` aq “ g

holds for all integers n ě N . (Note that gcdpx, yq denotes the greatest common divisor of
integers x and y.)

(Indonesia)

Answer: The only solution is pa, bq “ p1, 1q.

Solution 1. It is clear that we may take g “ 2 for pa, bq “ p1, 1q. Supposing that pa, bq satisfies
the conditions in the problem, let N be a positive integer such that gcdpan ` b, bn ` aq “ g for
all n ě N .
Lemma. We have that g “ gcdpa, bq or g “ 2 gcdpa, bq.
Proof. Note that both aN ` b and aN`1 ` b are divisible by g. Hence

apaN ` bq ´ paN`1
` bq “ ab ´ b “ bpa ´ 1q

is divisible by g. Analogously, apb ´ 1q is divisible by g. Their difference a ´ b is then divisible
by g, so g also divides apb ´ 1q ` apa ´ bq “ a2 ´ a. All powers of a are then congruent modulo
g, so a ` b ” aN ` b ” 0 pmod gq. Then 2a “ pa ` bq ` pa ´ bq and 2b “ pa ` bq ´ pa ´ bq
are both divisible by g, so g | 2 gcdpa, bq. On the other hand, it is clear that gcdpa, bq | g, thus
proving the Lemma. l

Let d “ gcdpa, bq, and write a “ dx and b “ dy for coprime positive integers x and y. We
have that

gcd ppdxq
n

` dy, pdyq
n

` dxq “ d gcd
`

dn´1xn
` y, dn´1yn ` x

˘

,

so the Lemma tells us that

gcd
`

dn´1xn
` y, dn´1yn ` x

˘

ď 2

for all n ě N . Defining K “ d2xy`1, note that K is coprime to each of d, x, and y. By Euler’s
theorem, for n ” ´1 pmod φpKqq we have that

dn´1xn
` y ” d´2x´1

` y ” d´2x´1
p1 ` d2xyq ” 0 pmod Kq,

so K | dn´1xn ` y. Analogously, we have that K | dn´1yn ` x. Taking such an n which also
satisfies n ě N gives us that

K | gcdpdn´1xn
` y, dn´1yn ` xq ď 2.

This is only possible when d “ x “ y “ 1, which yields the only solution pa, bq “ p1, 1q.

Solution 2. After proving the Lemma, one can finish the solution as follows.
For any prime factor p of ab` 1, p is coprime to a and b. Take an n ě N such that n ” ´1

pmod p ´ 1q. By Fermat’s little theorem, we have that

an ` b ” a´1
` b “ a´1

p1 ` abq ” 0 pmod pq,

bn ` a ” b´1
` a “ b´1

p1 ` abq ” 0 pmod pq,

then p divides g. By the Lemma, we have that p | 2 gcdpa, bq, and thus p “ 2. Therefore, ab` 1
is a power of 2, and a and b are both odd numbers.

If pa, bq ‰ p1, 1q, then ab ` 1 is divisible by 4, hence ta, bu “ t´1, 1u pmod 4q. For odd
n ě N , we have that

an ` b ” bn ` a ” p´1q ` 1 “ 0 pmod 4q,

then 4 | g. But by the Lemma, we have that ν2pgq ď ν2p2 gcdpa, bqq “ 1, which is a contradiction.
So the only solution to the problem is pa, bq “ p1, 1q.



12 Bath, United Kingdom, 10th–22nd July 2024

Solution 3. In fact, considering an ` b and bn ` a modulo ab` 1 is sufficient for the solution,
without the Lemma.

Let again K “ ab ` 1, which is coprime to both a and b. By Euler’s theorem, for n “

k ¨ φpKq ´ 1 we have

apan ` bq “ pakq
φpKq

` ab ” 1 ` ab “ K ” 0 pmod Kq,

so K | an ` b and similarly K | bn ` a. Hence K is a common divisor of an ` b and bn ` a. If
n is sufficiently large, the greatest common divisor is supposed to be g, so K | g.

Now, for sufficiently large n “ k ¨ φpKq we have K | g | an ` b and therefore

0 ” an ` b “ pakq
φpKq

` b ” 1 ` b pmod Kq,

so K “ ab ` 1 | b ` 1 and similarly ab ` 1 | a ` 1, which is possible only for a “ b “ 1,
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Problem 3. Let a1, a2, a3, . . . be an infinite sequence of positive integers, and let N be
a positive integer. Suppose that, for each n ą N , an is equal to the number of times an´1

appears in the list a1, a2, . . . , an´1.

Prove that at least one of the sequences a1, a3, a5, . . . and a2, a4, a6, . . . is eventually periodic.

(An infinite sequence b1, b2, b3, . . . is eventually periodic if there exist positive integers p and M
such that bm`p “ bm for all m ě M .)

(Australia)

Solution 1. Let M ą maxpa1, . . . , aNq. We first prove that some integer appears infinitely
many times. If not, then the sequence contains arbitrarily large integers. The first time each
integer larger than M appears, it is followed by a 1. So 1 appears infinitely many times, which
is a contradiction.

Now we prove that every integer x ě M appears at most M ´ 1 times. If not, consider the
first time that any x ě M appears for the M th time. Up to this point, each appearance of x is
preceded by an integer which has appeared x ě M times. So there must have been at least M
numbers that have already appeared at least M times before x does, which is a contradiction.

Thus there are only finitely many numbers that appear infinitely many times. Let the largest
of these be k. Since k appears infinitely many times there must be infinitely many integers
greater than M which appear at least k times in the sequence, so each integer 1, 2, . . . , k ´ 1
also appears infinitely many times. Since k ` 1 doesn’t appear infinitely often there must only
be finitely many numbers which appear more than k times. Let the largest such number be
l ě k. From here on we call an integer x big if x ą l, medium if l ě x ą k and small if x ď k.
To summarise, each small number appears infinitely many times in the sequence, while each
big number appears at most k times in the sequence.

Choose a large enough N 1 ą N such that aN 1 is small, and in a1, . . . , aN 1 :

• every medium number has already made all of its appearances;

• every small number has made more than maxpk,Nq appearances.

Since every small number has appeared more than k times, past this point each small number
must be followed by a big number. Also, by definition each big number appears at most k
times, so it must be followed by a small number. Hence the sequence alternates between big
and small numbers after aN 1 .
Lemma 1. Let g be a big number that appears after aN 1 . If g is followed by the small number h,
then h equals the amount of small numbers which have appeared at least g times before that
point.
Proof. By the definition of N 1, the small number immediately preceding g has appeared more
than maxpk,Nq times, so g ą maxpk,Nq. And since g ą N , the gth appearance of every small
number must occur after aN and hence is followed by g. Since there are k small numbers and
g appears at most k times, g must appear exactly k times, always following a small number
after aN . Hence on the hth appearance of g, exactly h small numbers have appeared at least g
times before that point. l

Denote by ari,js the subsequence ai, ai`1, . . . , aj.
Lemma 2. Suppose that i and j satisfy the following conditions:

(a) j ą i ą N 1 ` 2,

(b) ai is small and ai “ aj,

(c) no small value appears more than once in ari,j´1s.

Then ai´2 is equal to some small number in ari,j´1s.
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Proof. Let I be the set of small numbers that appear at least ai´1 times in ar1,i´1s. By Lemma 1,
ai “ |I|. Similarly, let J be the set of small numbers that appear at least aj´1 times in ar1,j´1s.
Then by Lemma 1, aj “ |J | and hence by (b), |I| “ |J |. Also by definition, ai´2 P I and
aj´2 P J .

Suppose the small number aj´2 is not in I. This means aj´2 has appeared less than ai´1

times in ar1,i´1s. By (c), aj´2 has appeared at most ai´1 times in ar1,j´1s, hence aj´1 ď ai´1.
Combining with ar1,i´1s Ă ar1,j´1s, this implies I Ď J . But since aj´2 P J z I, this contradicts
|I| “ |J |. So aj´2 P I, which means it has appeared at least ai´1 times in ar1,i´1s and one more
time in ari,j´1s. Therefore aj´1 ą ai´1.

By (c), any small number appearing at least aj´1 times in ar1,j´1s has also appeared aj´1´1 ě

ai´1 times in ar1,i´1s. So J Ď I and hence I “ J . Therefore, ai´2 P J , so it must appear at
least aj´1 ´ ai´1 “ 1 more time in ari,j´1s. l

For each small number an with n ą N 1 ` 2, let pn be the smallest number such that
an`pn “ ai is also small for some i with n ď i ă n ` pn. In other words, an`pn “ ai is the first
small number to occur twice after an´1. If i ą n, Lemma 2 (with j “ n ` pn) implies that ai´2

appears again before an`pn , contradicting the minimality of pn. So i “ n. Lemma 2 also implies
that pn ě pn´2. So pn, pn`2, pn`4, . . . is a nondecreasing sequence bounded above by 2k (as
there are only k small numbers). Therefore, pn, pn`2, pn`4, . . . is eventually constant and the
subsequence of small numbers is eventually periodic with period at most k.

Note. Since every small number appears infinitely often, Solution 1 additionally proves that the
sequence of small numbers has period k. The repeating part of the sequence of small numbers is thus
a permutation of the integers from 1 to k. It can be shown that every permutation of the integers from
1 to k is attainable in this way.
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Solution 2. We follow Solution 1 until after Lemma 1. For each n ą N 1 we keep track of how
many times each of 1, 2, . . . , k has appeared in a1, . . . , an. We will record this information in
an updating pk ` 1q-tuple

pb1, b2, . . . , bk; jq

where each bi records the number of times i has appeared. The final element j of the pk ` 1q-
tuple, also called the active element, represents the latest small number that has appeared in
a1, . . . , an.

As n increases, the value of pb1, b2, . . . , bk; jq is updated whenever an is small. The pk ` 1q-
tuple updates deterministically based on its previous value. In particular, when an “ j is small,
the active element is updated to j and we increment bj by 1. The next big number is an`1 “ bj.
By Lemma 1, the next value of the active element, or the next small number an`2, is given by
the number of b terms greater than or equal to the newly updated bj, or

|ti | 1 ď i ď k, bi ě bju|. (1)

Each sufficiently large integer which appears i`1 times must also appear i times, with both
of these appearances occurring after the initial block of N . So there exists a global constant C
such that bi`1 ´ bi ď C. Suppose that for some r, br`1 ´ br is unbounded from below. Since the
value of br`1 ´ br changes by at most 1 when it is updated, there must be some update where
br`1 ´ br decreases and br`1 ´ br ă ´pk ´ 1qC. Combining with the fact that bi ´ bi´1 ď C for
all i, we see that at this particular point, by the triangle inequality

minpb1, . . . , brq ą maxpbr`1, . . . , bkq. (2)

Since br`1 ´ br just decreased, the new active element is r. From this point on, if the new
active element is at most r, by (1) and (2), the next element to increase is once again from
b1, . . . , br. Thus only b1, . . . , br will increase from this point onwards, and bk will no longer
increase, contradicting the fact that k must appear infinitely often in the sequence. Therefore
|br`1 ´ br| is bounded.

Since |br`1 ´ br| is bounded, it follows that each of |bi ´ b1| is bounded for i “ 1, . . . , k.
This means that there are only finitely many different states for pb1 ´ b1, b2 ´ b1, . . . , bk ´ b1; jq.
Since the next active element is completely determined by the relative sizes of b1, b2, . . . , bk to
each other, and the update of b terms depends on the active element, the active element must
be eventually periodic. Therefore the small numbers subsequence, which is either a1, a3, a5, . . .
or a2, a4, a6, . . . , must be eventually periodic.
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Day 2

Problem 4. Let ABC be a triangle with AB ă AC ă BC. Let the incentre and incircle
of triangle ABC be I and ω, respectively. Let X be the point on line BC different from C
such that the line through X parallel to AC is tangent to ω. Similarly, let Y be the point on
line BC different from B such that the line through Y parallel to AB is tangent to ω. Let AI
intersect the circumcircle of triangle ABC again at P ‰ A. Let K and L be the midpoints
of AC and AB, respectively.

Prove that =KIL ` =Y PX “ 180˝.
(Poland)

Solution 1. Let A1 be the reflection of A in I, then A1 lies on the angle bisector AP . Lines
A1X and A1Y are the reflections of AC and AB in I, respectively, and so they are the tangents
to ω from X and Y . As is well-known, PB “ PC “ PI, and since =BAP “ =PAC ą 30˝,
PB “ PC is greater than the circumradius. Hence PI ą 1

2
AP ą AI; we conclude that A1 lies

in the interior of segment AP .

A

B C

I

KL

P

X Y

A1

We have =APB “ =ACB in the circumcircle and =ACB “ =A1XC because A1X ∥ AC.
Hence, =APB “ =A1XC, and so quadrilateral BPA1X is cyclic. Similarly, it follows that
CY A1P is cyclic.

Now we are ready to transform =KIL` =Y PX to the sum of angles in triangle A1CB. By
a homothety of factor 2 at A we have =KIL “ =CA1B. In circles BPA1X and CY A1P we
have =APX “ =A1BC and =Y PA “ =BCA1, therefore

=KIL ` =Y PX “ =CA1B `
`

=Y PA ` =APX
˘

“ =CA1B ` =BCA1
` =A1BC “ 180˝.
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Comment. The constraint AB ă AC ă BC was added by the Problem Selection Committee in order
to reduce case-sensitivity. Without that, there would be two more possible configurations according to
the possible orders of points A, P and A1, as shown in the pictures below. The solution for these cases
is broadly the same, but some extra care is required in the degenerate case when A1 coincides with P
and line AP is a common tangent to circles BPX and CPY .

A

B C

I

KL

A1 “ P

X Y

A

B C

I

KL

P

X Y

A1
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Solution 2. Let BC “ a, AC “ b, AB “ c and s “ a`b`c
2

, and let the radii of the incircle,
B-excircle and C-excircle be r, rb and rc, respectively. Let the incircle be tangent to AC and AB
at B0 and C0, respectively; let the B-excircle be tangent to AC at B1, and let the C-excircle
be tangent to AB at C1. As is well-known, AB1 “ s ´ c and areap△ABCq “ rs “ rcps ´ cq.

Let the line through X, parallel to AC be tangent to the incircle at E, and the line
through Y , parallel to AB be tangent to the incircle at D. Finally, let AP meet BB1 at F .

A

B C

P

I

D

B0

K

B1

C0

L
C1

E
F

X Y

It is well-known that points B, E, and B1 are collinear by the homothety between the incircle
and the B-excircle, and BE ∥ IK because IK is a midline in triangle B0EB1. Similarly,
it follows that C, D, and C1 are collinear and CD ∥ IL. Hence, the problem reduces to
proving =Y PA “ =CBE (and its symmetric counterpart =APX “ =DCB with respect to
the vertex C), so it suffices to prove that FY PB is cyclic. Since ACPB is cyclic, that is
equivalent to FY ∥ B1C and BF

FB1
“ BY

Y C
.

By the angle bisector theorem we have

BF

FB1

“
AB

AB1

“
c

s ´ c
.

The homothety at C that maps the incircle to the C-excircle sends Y to B, so

BC

Y C
“

rc
r

“
s

s ´ c
.

So,
BY

Y C
“

BC

Y C
´ 1 “

s

s ´ c
´ 1 “

c

s ´ c
“

BF

FB1

,

which completes the solution.
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Solution 3. We claim triangles AIK and BY P are similar. Similarly it will follow that
triangles AIL and CXP are similar so we would get

=KIL ` =Y PX “ =KIA ` =AIL ` =Y PX “ =XY P ` =PXY ` =Y PX “ 180˝.

To prove this claim, first observe that

=IAK “ =PAC “ =PBC “ =PBY.

By considering projections of points I and Y onto AB we get AI “ r{ sin pA{2q and BY “

2r{ sinB (as the tangent from Y to ω distinct from BC is parallel to AB). Also applying
extended sine rule we get,

AI

AK
“

r{ sin pA{2q

R sinB
and

BY

BP
“

2r{ sinB

2R sin pA{2q

which are equal. Combining these gives the similarity.

Solution 4. Let A1 be the reflection of A in I. As in Solution 1, we show that the lines AB,
AC, A1X, and A1Y form a rhombus. Let T be the intersection of lines AI and BC and let T
denote the negative homothety with centre D and factor α taking A to A1. We have that

T pBq “ T pAB X BCq “ T pABq X T pBCq “ A1Y X BC “ Y,

and similarly T pCq “ X.
Let A2 “ T pA1q then

=XA2Y “ =T ´1
pXqT ´1

pA2
qT ´1

pY q “ =CA1B “ =KIL

where the last step comes from a homothety of factor 2 at A. As A1 lies on the opposite side of
BC to A, A2 and P lie on opposite sides of BC. Thus, the above shows that =KIL`=Y PX “

180˝ is equivalent to Y PXA2 being cyclic. Computing powers at point T and using properties
of the homothety we get

TA2
¨ TP “ TT 2

pAq ¨ TP “ α2TA ¨ TP “ α2TB ¨ TC “ TT pBq ¨ TT pCq “ TY ¨ TX

which gives the result.

Comment 1. Letting P̃ “ T ´1pP q and noting T ´1pY PXA2q “ BP̃CA1, we could also finish by
showing BP̃CA1 is cyclic which follows from

TA1 ¨ T P̃ “ TT pAq ¨ TT ´1pP q “ TA ¨ TP “ TB ¨ TC.

Comment 2. We can also use the above approach to show that PA1XB is cyclic by

TX ¨ TB “ TT pCq ¨ TB “ αTC ¨ TB “ αTA ¨ TP “ TT pAq ¨ TP “ TA1 ¨ TP.
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Solution 5. Let IX intersect CP at Q.
Claim. Triangle CXQ is similar to △AIB (and Q lies on circle BIC).
Proof. Since the tangent at X to ω, distinct from BC, is parallel to AC, and that XI bisects
the two tangents from X,

=CXI “
1

2
p180˝

´ =ACBq “ 90˝
´

1

2
=ACB.

Using this

=CQX “ =CXI´=BCP “ 90˝
´
1

2
=ACB´=BAP “ 90˝

´
1

2
p=ACB ` =BACq “

1

2
=CBA.

(Which is enough to show Q lies on circle BIC.) Combining this with =XCQ “ =BCP “

=BAI gives the similarity. l

Note that P is the centre of circle BIC so P is the midpoint of CQ. This shows that P
and L are similar points in the two triangles in the Claim since they are so

=PXY “ =PXC “ =AIL.

Similarly =XY P “ =KIA so

=KIL ` =Y PX “ =KIA ` =AIL ` =Y PX “ =XY P ` =PXY ` =Y PX “ 180˝.

Solution 6. Let C1 be where the C-excircle touches side AB. Let the C-mixtilinear incircle
be tangent to side BC at X 1 and circle ABC at TC .
Claim. X “ X 1.
Proof. From a well-known configuration, =X 1IC “ 90˝. As in Solution 5, we can show that
=CXI “ 90˝ ´ 1

2
=ACB so

=XIC “ 180˝
´ =CXI ´ =ICX “ 180˝

´

ˆ

90˝
´

1

2
=ACB

˙

´
1

2
=ACB “ 90˝.

Hence =XIC “ =X 1IC “ 90˝ so X “ X 1 as claimed. l

The homothety at TC that sends the C-mixtilinear incircle to circle ABC sends X to P
since the tangents at both points to the respective circles are parallel to BC. Hence P , X, and
TC are collinear.

An inversion centred at C with radius
?
CA ¨ CB composed with a reflection in the bisector

of =ACB swaps C1 and TC so =ACTC “ =C1CB. Hence,

=APX “ =APTC “ =ACTC “ =C1CB.

We can finish as in Solution 2.
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Solution 7. Let N be the midpoint of BI.
Claim. PI and PB are tangent to circle BXI.
Proof. As in Solution 5, we can show that =CXI “ 90˝ ´ 1

2
=ACB so

=BIX “ =CXI ´ =XBI “ 90˝
´

1

2
=ACB ´

1

2
CBA “

1

2
=BAC “ =PAC “ =PBX

which shows PB is tangent to circle BXI. P is the centre of circle BIC so PB “ PI so PI is
also tangent to circle BXI. l

The Claim shows that PX is the X-symmedian in triangle BXI so

=IXN “ 180˝
´ =BXP “ =PXY.

Also, from the angle chase in the Claim, we get =BAI “ =BIX. Combining this with
=XBI “ =IBA we get △ABI „ △IBX. L and N are similar points in these triangles so
=IXN “ =AIL. Therefore, =PXY “ =AIL. Similarly, =XY P “ =KIA so

=KIL ` =Y PX “ p=AIL ` =KIAq ` =Y PX “ =PXY ` =XY P ` =Y PX “ 180˝.
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Problem 5. Turbo the snail plays a game on a board with 2024 rows and 2023 columns.
There are hidden monsters in 2022 of the cells. Initially, Turbo does not know where any of
the monsters are, but he knows that there is exactly one monster in each row except the first
row and the last row, and that each column contains at most one monster.

Turbo makes a series of attempts to go from the first row to the last row. On each attempt, he
chooses to start on any cell in the first row, then repeatedly moves to an adjacent cell sharing
a common side. (He is allowed to return to a previously visited cell.) If he reaches a cell
with a monster, his attempt ends and he is transported back to the first row to start a new
attempt. The monsters do not move, and Turbo remembers whether or not each cell he has
visited contains a monster. If he reaches any cell in the last row, his attempt ends and the
game is over.

Determine the minimum value of n for which Turbo has a strategy that guarantees reaching
the last row on the nth attempt or earlier, regardless of the locations of the monsters.

(Hong Kong)

Comment. One of the main difficulties of solving this question is in determining the correct expression
for n. Students may spend a long time attempting to prove bounds for the wrong value for n before
finding better strategies.

Students may incorrectly assume that Turbo is not allowed to backtrack to squares he has already
visited within a single attempt. Fortunately, making this assumption does not change the answer to
the problem, though it may make it slightly harder to find a winning strategy.

Answer: The answer is n “ 3.

Solution. First we demonstrate that there is no winning strategy if Turbo has 2 attempts.
Suppose that p2, iq is the first cell in the second row that Turbo reaches on his first attempt.

There can be a monster in this cell, in which case Turbo must return to the first row immediately,
and he cannot have reached any other cells past the first row.

Next, suppose that p3, jq is the first cell in the third row that Turbo reaches on his second
attempt. Turbo must have moved to this cell from p2, jq, so we know j ‰ i. So it is possible that
there is a monster on p3, jq, in which case Turbo also fails on his second attempt. Therefore
Turbo cannot guarantee to reach the last row in 2 attempts.

Next, we exhibit a strategy for n “ 3. On the first attempt, Turbo travels along the path

p1, 1q Ñ p2, 1q Ñ p2, 2q Ñ ¨ ¨ ¨ Ñ p2, 2023q.

This path meets every cell in the second row, so Turbo will find the monster in row 2 and his
attempt will end.

If the monster in the second row is not on the edge of the board (that is, it is in cell p2, iq
with 2 ď i ď 2022), then Turbo takes the following two paths in his second and third attempts:

p1, i ´ 1q Ñ p2, i ´ 1q Ñ p3, i ´ 1q Ñ p3, iq Ñ p4, iq Ñ ¨ ¨ ¨ Ñ p2024, iq.

p1, i ` 1q Ñ p2, i ` 1q Ñ p3, i ` 1q Ñ p3, iq Ñ p4, iq Ñ ¨ ¨ ¨ Ñ p2024, iq.

The only cells that may contain monsters in either of these paths are p3, i ´ 1q and p3, i ` 1q.
At most one of these can contain a monster, so at least one of the two paths will be successful.
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Figure 1: Turbo’s first attempt, and his second and third attempts in the case where the
monster on the second row is not on the edge. The cross indicates the location of a monster,
and the shaded cells are cells guaranteed to not contain a monster.

If the monster in the second row is on the edge of the board, without loss of generality we
may assume it is in p2, 1q. Then, on the second attempt, Turbo takes the following path:

p1, 2q Ñ p2, 2q Ñ p2, 3q Ñ p3, 3q Ñ ¨ ¨ ¨ Ñ p2022, 2023q Ñ p2023, 2023q Ñ p2024, 2023q.

Figure 2: Turbo’s second and third attempts in the case where the monster on the second row
is on the edge. The light gray cells on the right diagram indicate cells that were visited on the
previous attempt. Note that not all safe cells have been shaded.

If there are no monsters on this path, then Turbo wins. Otherwise, let pi, jq be the first cell
on which Turbo encounters a monster. We have that j “ i or j “ i ` 1. Then, on the third
attempt, Turbo takes the following path:

p1, 2q Ñ p2, 2q Ñ p2, 3q Ñ p3, 3q Ñ ¨ ¨ ¨ Ñ pi ´ 2, i ´ 1q Ñ pi ´ 1, i ´ 1q

Ñ pi, i ´ 1q Ñ pi, i ´ 2q Ñ ¨ ¨ ¨ Ñ pi, 2q Ñ pi, 1q

Ñ pi ` 1, 1q Ñ ¨ ¨ ¨ Ñ p2023, 1q Ñ p2024, 1q.
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Now note that

• The cells from p1, 2q to pi ´ 1, i ´ 1q do not contain monsters because they were reached
earlier than pi, jq on the previous attempt.

• The cells pi, kq for 1 ď k ď i ´ 1 do not contain monsters because there is only one
monster in row i, and it lies in pi, iq or pi, i ` 1q.

• The cells pk, 1q for i ď k ď 2024 do not contain monsters because there is at most one
monster in column 1, and it lies in p2, 1q.

Therefore Turbo will win on the third attempt.

Comment. A small variation on Turbo’s strategy when the monster on the second row is on the edge
is possible. On the second attempt, Turbo can instead take the path

p1, 2023q Ñ p2, 2023q Ñ p2, 2022q Ñ ¨ ¨ ¨ Ñ p2, 3q Ñ p2, 2q Ñ p2, 3q Ñ ¨ ¨ ¨ Ñ p2, 2023q

Ñ p3, 2023q Ñ p3, 2022q Ñ ¨ ¨ ¨ Ñ p3, 4q Ñ p3, 3q Ñ p3, 4q Ñ ¨ ¨ ¨ Ñ p3, 2023q

Ñ ¨ ¨ ¨

Ñ p2022, 2023q Ñ p2022, 2022q Ñ p2022, 2023q

Ñ p2023, 2023q

Ñ p2024, 2023q.

If there is a monster on this path, say in cell pi, jq, then on the third attempt Turbo can travel straight
down to the cell just left of the monster instead of following the path traced out in the second attempt.

p1, j ´ 1q Ñ p2, j ´ 1q Ñ ¨ ¨ ¨ Ñ pi ´ 1, j ´ 1q Ñ pi, j ´ 1q

Ñ pi, j ´ 2q Ñ ¨ ¨ ¨ Ñ pi, 2q Ñ pi, 1q

Ñ pi ` 1, 1q Ñ ¨ ¨ ¨ Ñ p2023, 1q Ñ p2024, 1q.

Figure 3: Alternative strategy for Turbo’s second and third attempts.
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Problem 6. Let Q be the set of rational numbers. A function f : Q Ñ Q is called
aquaesulian if the following property holds: for every x, y P Q,

fpx ` fpyqq “ fpxq ` y or fpfpxq ` yq “ x ` fpyq.

Show that there exists an integer c such that for any aquaesulian function f there are at most
c different rational numbers of the form fprq ` fp´rq for some rational number r, and find the
smallest possible value of c.

(Japan)

Answer: The smallest value is c “ 2.

Common remarks. Suppose that f is a function satisfying the condition of the problem.
We will use the following throughout all solutions.

• a „ b if either fpaq “ b or fpbq “ a,

• a Ñ b if fpaq “ b,

• P px, yq to denote the proposition that either fpx ` fpyqq “ fpxq ` y or fpfpxq ` yq “

x ` fpyq,

• gpxq “ fpxq ` fp´xq.

With this, the condition P px, yq could be rephrased as saying that x` fpyq „ fpxq ` y, and
we are asked to determine the maximum possible number of elements of tgpxq | x P Qu.

Solution 1. We begin by providing an example of a function f for which there are two values
of gpxq. We take the function fpxq “ txu ´ txu, where txu denotes the floor of x (that is, the
largest integer less than or equal to x) and txu “ x ´ txu denotes the fractional part of x.

First, we show that f satisfies P px, yq. Given x, y P Q, we have

fpxq ` y “ txu ´ txu ` tyu ` tyu “ ptxu ` tyuq ` ptyu ´ txuq;

x ` fpyq “ txu ` txu ` tyu ´ tyu “ ptxu ` tyuq ` ptxu ´ tyuq.

If txu ă tyu, then we have that the fractional part of fpxq ` y is tyu ´ txu and the floor is
txu ` tyu, so fpxq ` y Ñ x ` fpyq. Likewise, if txu ą tyu, then x ` fpyq Ñ fpxq ` y. Finally,
if txu “ tyu, then fpxq ` y “ x ` fpyq “ txu ` tyu is an integer. In all cases, the relation P is
satisfied.

Finally, we observe that if x is an integer then gpxq “ 0, and if x is not an integer then
gpxq “ ´2, so there are two values for gpxq as required.

Now, we prove that there cannot be more than two values of gpxq. P px, xq tells us that
x ` fpxq „ x ` fpxq, or in other words, for all x,

fpx ` fpxqq “ x ` fpxq. (1)

We begin with the following lemma.
Lemma 1. f is a bijection, and satisfies

fp´fp´xqq “ x. (2)
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Proof. We first prove that f is injective. Suppose that fpx1q “ fpx2q; then P px1, x2q tells us
that fpx1q `x2 „ fpx2q `x1. Without loss of generality, suppose that fpx1q `x2 Ñ fpx2q `x1.

But fpx1q “ fpx2q, so fpfpx1q ` x2q “ fpfpx2q ` x2q “ fpx2q ` x2 by (1). Therefore,
fpx2q ` x1 “ fpx2q ` x2, as required.

Now, (1) with x “ 0 tells us that fpfp0qq “ fp0q and so by injectivity fp0q “ 0.
Applying P px,´fpxqq tells us that 0 „ x ` fp´fpxqq, so either 0 “ fp0q “ x ` fp´fpxqq

or fpx ` fp´fpxqqq “ 0 which implies that x ` fp´fpxqq “ 0 by injectivity. Either way, we
deduce that x “ ´fp´fpxqq, or x “ fp´fp´xqq by replacing x with ´x.

Finally, note that bijectivity follows immediately from (2). l

Since f is bijective, it has an inverse, which we denote f´1. Rearranging (2) (after replacing x
with ´x) gives that fp´xq “ ´f´1pxq. We have gpxq “ fpxq ` fp´xq “ fpxq ´ f´1pxq.

Suppose gpxq “ u and gpyq “ v, where u ‰ v are both nonzero. Define x1 “ f´1pxq and
y1 “ f´1pyq; by definition, we have

x1
Ñ x Ñ x1

` u

y1
Ñ y Ñ y1

` v.

Putting in P px1, yq gives x`y „ x1 `y1 `v, and putting in P px, y1q gives x`y „ x1 `y1 `u.
These are not equal since u ‰ v, and x ` y may have only one incoming and outgoing arrow
because f is a bijection, so we must have either x1 ` y1 ` u Ñ x ` y Ñ x1 ` y1 ` v or the same
with the arrows reversed. Swapping px, uq and py, vq if necessary, we may assume without loss
of generality that this is the correct direction for the arrows.

Also, we have ´x1 ´ u Ñ ´x Ñ ´x1 by Lemma 1. Putting in P px ` y,´x1 ´ uq gives
y „ y1 ` v ´ u, and so y1 ` v ´ u must be either y1 ` v or y1. This means u must be either 0
or v, and this contradicts our assumption about u and v.

Comment. Lemma 1 can also be proven as follows. We start by proving that f must be surjective.
Suppose not; then, there must be some t which does not appear in the output of f . P px, t ´ fpxqq

tells us that t „ x ` fpt ´ fpxqq, and so by assumption fptq “ x ` fpt ´ fpxqq for all x. But setting
x “ fptq ´ t gives t “ fpt ´ fpfptq ´ tqq, contradicting our assumption about t.

Now, choose some t such that fptq “ 0; such a t must exist by surjectivity. P pt, tq tells us that
fptq “ t, or in other words t “ 0 and fp0q “ 0. The remainder of the proof is the same as the proof
given in Solution 1.

Solution 2. We again start with Lemma 1, and note fp0q “ 0 as in the proof of that lemma.
P px,´fpyqq gives x`fp´fpyqq „ fpxq´fpyq, and using (2) this becomes x´y „ fpxq´fpyq.

In other words, either fpx ´ yq “ fpxq ´ fpyq or x ´ y “ fpfpxq ´ fpyqq. In the latter case, we
deduce that

fp´px ´ yqq “ fp´fpfpxq ´ fpyqqq

fpy ´ xq “ fp´fpfpxq ´ fpyqqq

“ fpyq ´ fpxq.

Thus, fpyq ´ fpxq is equal to either fpy ´ xq or ´fpx ´ yq. Replacing y with x ` d, we deduce
that fpx ` dq ´ fpxq P tfpdq,´fp´dqu.

Now, we prove the following claim.

Claim 1. For any n P Zą0 and d P Q, we have that either gpdq “ 0 or gpdq “ ˘gpd{nq.
In particular, if gpd{nq “ 0 then gpdq “ 0.
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Proof. We first prove that if gpd{nq “ 0 then gpdq “ 0. Suppose that gpd{nq “ 0. Then
fpd{nq “ ´fp´d{nq and so fpx ` d{nq ´ fpxq “ fpd{nq for any x. Applying this repeatedly,
we deduce that fpx ` dq ´ fpxq “ nfpd{nq for any x. Applying this with x “ 0 and x “ ´d
and adding gives fpdq ` fp´dq “ 0, so gpdq “ 0, and in particular the claim is true whenever
gpdq “ 0.

Now, select n P Zą0 and d P Q such that gpdq ‰ 0, and observe that we must have gpd{nq ‰

0. Observe that for any k P Z we have that fpkd{nq ´ fppk ´ 1qd{nq P tfpd{nq,´fp´d{nqu.
Let Ai be the number of k P Z with i ´ n ă k ď i such that this difference equals fpd{nq.

We deduce that for any i P Z,

fpid{nq ´ fpid{n ´ dq “
ÿ

i´năkďi

fpkd{nq ´ fppk ´ 1qd{nq

“ Aifpd{nq ´ pn ´ Aiqfp´d{nq

“ ´nfp´d{nq ` Aigpd{nq.

Since gpd{nq is nonzero, this is a nonconstant linear function of Ai. However, there are only
two possible values for fpid{nq ´ fpid{n ´ dq, so there must be at most two possible values
for Ai as i varies. And since Ai`1 ´ Ai P t´1, 0, 1u, those two values must differ by 1 (if there
are two values).

Now, we have

fpdq ´ fp0q “ ´nfp´d{nq ` Angpd{nq, and
fp0q ´ fp´dq “ ´nfp´d{nq ` A0gpd{nq.

Subtracting these (using the fact that fp0q “ 0) we obtain

fpdq ` fp´dq “ pAn ´ A0qgpd{nq

“ ˘gpd{nq,

where the last line follows from the fact that gpdq is nonzero. l

It immediately follows that there can only be one nonzero number of the form gpxq up
to sign; to see why, if gpdq and gpd1q are both nonzero, then for some n, n1 P Zą0 we have
d{n “ d1{n1. But

gpdq “ ˘gpd{nq “ ˘gpd1
q.

Finally, suppose that for some d, d1 we have gpdq “ c and gpd1q “ ´c for some nonzero c.
So we have

fpdq ` fp´dq ´ fpd1
q ´ fp´d1

q “ 2c

which rearranges to become pfpdq ´ fpd1qq ´ pfp´d1q ´ fp´dqq “ 2c.
Each of the bracketed terms must be equal to either fpd´ d1q or ´fpd1 ´ dq. However, they

cannot be equal since c is nonzero, so gpd´ d1q “ fpd´ d1q ` fpd1 ´ dq “ ˘2c. This contradicts
the assertion that gp´xq “ ˘c for all x.

Comment. After establishing Claim 1, Solution 2 may also be finished as follows. We will prove that
Claim 1 may be improved to gpdq “ 0 or gpdq “ gpd{nq, in other words we may exclude the case that
gpdq “ ´gpd{nq ‰ 0. This will imply that there can be at most one nonzero number of the form gpxq.
Suppose that d and n are as in the hypothesis of Claim 1.

Let Bi be the number of k P Z with i ´ n ` 1 ă k ď i such that fpkd{nq ´ fppk ´ 1qd{nq equals
fpd{nq. As in the proof in Solution 2, it follows that for any i P Z,

fpid{nq ´ fpid{n ´ pn ´ 1qd{nq “ ´pn ´ 1qfp´d{nq ` Bigpd{nq.
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There are two possible values for fpid{nq ´fpid{n´ pn´1qd{nq so there can be at most two values
for Bi as i varies, which must differ by 1 (if there are two values). However, we have

fpdq ´ fpd{nq “ ´pn ´ 1qfp´d{nq ` Bngpd{nq, and
fp´d{nq ´ fp´dq “ ´pn ´ 1qfp´d{nq ` B´1gpd{nq.

Subtracting these gives that gpdq ´ gpd{nq “ pBn ´ B´1qgpd{nq, and hence it is impossible to have
gpd{nq “ ´gpdq ‰ 0 as that would force Bn ´ B´1 “ ´2.

Solution 3. As in Solution 1, we start by establishing Lemma 1 as above, and write f´1pxq “

´fp´xq for the inverse of f , and gpxq “ fpxq ´ f´1pxq.
We now prove the following.

Lemma 2. If gpxq ‰ gpyq, then gpx ` yq “ ˘pgpxq ´ gpyqq.
Proof. Assume x and y are such that gpxq ‰ gpyq. Applying P px, f´1pyqq gives x ` y „

fpxq ` f´1pyq, and applying P pf´1pxq, yq gives x ` y „ f´1pxq ` fpyq.
Observe that

pfpxq ` f´1
pyqq ´ pf´1

pxq ` fpyqq “ pfpxq ´ f´1
pxqq ´ pfpyq ´ f´1

pyqq

“ gpxq ´ gpyq.

By assumption, gpxq ‰ gpyq, and so fpxq ` f´1pyq ‰ f´1pxq ` fpyq. Since f is bijective,
this means that these two values must be fpx ` yq and f´1px ` yq in some order, and so
gpx` yq “ fpx` yq ´ f´1px` yq must be their difference up to sign, which is either gpxq ´ gpyq

or gpyq ´ gpxq. l

Claim. If x and q are rational numbers such that gpqq “ 0 and n is an integer, then gpx`nqq “

gpxq.
Proof. If gpbq “ 0 and gpaq ‰ gpa ` bq, then the lemma tells us that gpbq “ ˘pgpa ` bq ´ gpaqq,
which contradicts our assumptions. Therefore, gpaq “ gpa ` bq whenever gpbq “ 0.

A simple induction then gives that gpnbq “ 0 for any positive integer n, and gpnbq “ 0 for
negative n as gpxq “ gp´xq. The claim follows immediately. l

Lemma 3. There cannot be both positive and negative elements in the range of g.
Proof. Suppose that gpxq ą 0 and gpyq ă 0. Let S be the set of numbers of the form mx ` ny
for integers m,n. We first show that gpSq has infinitely many elements. Indeed, suppose
gpSq is finite, and let a P S maximise g and b P S maximise ´g. Then a ` b P S, and
gpa ` bq “ gpaq ´ gpbq or gpbq ´ gpaq. In the first case gpa ` bq ą gpaq and in the second case
gpa ` bq ă gpbq; in either case we get a contradiction.

Now, we show that there must exist some nonzero rational number q with gpqq “ 0. Indeed,
suppose first that a`fpaq “ 0 for all a. Then gpaq “ fpaq `fp´aq “ 0 for all a, and so g takes
no nonzero value. Otherwise, there is some a with a`fpaq ‰ 0, and so (1) yields that fpqq “ 0
for q “ a` fpaq ‰ 0. Noting that fp´qq “ 0 from Lemma 1 tells us that gpqq “ 0, as required.

Now, there must exist integers s and s1 such that xs “ qs1 and integers t and t1 such that
yt “ qt1. The claim above gives that the value of gpmx ` nyq depends only on the values of m
mod s and n mod t, so gpmx ` nyq can only take finitely many values. l

Finally, suppose that gpxq “ u and gpyq “ v where u ‰ v have the same sign. Assume
u, v ą 0 (the other case is similar) and assume u ą v without loss of generality.

P pf´1pxq,´yq gives x´y „ f´1pxq ´f´1pyq “ fpxq ´fpyq ´ pu´vq, and P px,´fpyqq gives
x´ y „ fpxq ´ fpyq. u´ v is nonzero, so fpx´ yq and f´1px´ yq must be fpxq ´ fpyq ´ pu´ vq

and fpxq ´ fpyq in some order, and since gpx ´ yq must be nonnegative, we have

fpxq ´ fpyq ´ pu ´ vq Ñ x ´ y Ñ fpxq ´ fpyq.

Then, P px ´ y, f´1pyqq tells us that px ´ yq ` y „ pfpxq ´ fpyqq ` pfpyq ´ vq, so x „ fpxq ´ v,
contradicting either v ‰ u or v ą 0.
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Comment. Lemma 2 also follows from fpx ` dq ´ fpxq P tfpdq,´fp´dqu as proven in Solution 2.
Indeed, we also have fp´xq ´ fp´x ´ dq P tfpdq,´fp´dqu, and then subtracting the second from the
first we get gpx`dq´gpxq P tgpdq,´gpdq, 0u. Replacing x`d and x with x and ´y gives the statement
of Lemma 2.

Comment. It is possible to prove using Lemma 2 that g must have image of the form t0, c, 2cu if it
has size greater than 2. Indeed, if gpxq “ c and gpyq “ d with 0 ă c ă d, then gpx ` yq “ d ´ c as it
must be nonnegative, and gpyq “ gppx ` yq ` p´xqq “ |d ´ 2c| provided that d ‰ 2c.

However, it is not possible to rule out t0, c, 2cu based entirely on the conclusion of Lemma 2; indeed,
the function given by

gpxq “

$

’

&

’

%

0, if x “ 2n for n P Z;
2, if x “ 2n ` 1 for n P Z;
1, if x R Z.

satisfies the conclusion of Lemma 2 (even though there is no function f giving this choice of g).

Note. Solution 1 actually implies that the result also holds over R. The proposal was originally
submitted and evaluated over Q as it is presented here, and the Problem Selection Committee believes
that this form is more suitable for the competition because it allows for more varied and interesting
approaches once Lemma 1 has been established. Even the variant here defined over Q was found to be
fairly challenging.

Solution 4. As in the other solutions we establish Lemma 1, and as in Solution 2 we deduce
that fpxq ´ fpyq equals either fpx ´ yq or ´fpy ´ xq.

From fpx ´ yq ` fpy ´ xq “ gpx ´ yq we deduce that fpxq ´ fpyq ´ fpx ´ yq equals either 0
or ´gpx ´ yq, and so replacing x with x ` y gives

fpx ` yq ´ fpxq ´ fpyq P t0,´gpyqu. (3)

Swapping x and y gives that if gpxq ‰ gpyq then we must have fpx ` yq “ fpxq ` fpyq.
Then,

gpx ` yq “ fpx ` yq ` fpp´xq ` p´yqq

“ fpxq ` fpyq ` fp´xq ` fp´yq

“ gpxq ` gpyq,

where we used that gpxq “ gp´xq in the second line.
If gpxq ‰ gpyq are both nonzero, then gpx ` yq “ gpxq ` gpyq is not equal to gp´yq, so

gpxq “ gpx ` yq ` gp´yq “ gpxq ` 2gpyq which is a contradiction.

Solution 5. As in Solution 4, we establish Lemma 1 and (3).
From P px, f´1pyqq we deduce that x ` y „ fpxq ` fpyq ´ gpyq, which implies that either

fpx ` yq “ fpxq ` fpyq ´ gpyq or fpx ` yq ´ gpx ` yq “ f´1px ` yq “ fpxq ` fpyq ´ gpyq.
Rearranging, we deduce that fpx ` yq ´ fpxq ´ fpyq P t´gpyq, gpx ` yq ´ gpyqu.

Suppose that gpxq ‰ gpyq are both nonzero. As in Solution 4, we deduce from (3) that
fpx ` yq ´ fpxq ´ fpyq “ 0. Since gpyq ‰ 0, we must in fact have that gpx ` yq “ gpyq, and by
symmetry we also have that gpx ` yq “ gpxq. This contradicts gpxq ‰ gpyq.

Solution 6. As in the other solutions we establish Lemma 1, and as in Solution 2 we deduce
that fpxq ´ fpyq equals either fpx ´ yq or ´fpy ´ xq.
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Lemma 4. For any x and y, at least one of the following equalities holds.

gpfpxqq “ gpyq

gpfpxqq “ 0

gpfpyqq “ gpxq

gpfpyqq “ 0

Proof. If x and y satisfy that fpfpxq ` yq “ x ` fpyq, then fpfpxqq ´ fpfpxq ` yq equals either
fp´yq or ´fpyq, so either fpfpxqq ` fpyq “ x ` fpyq or fpfpxqq ´ fp´yq “ x ` fpyq. So
fpfpxqq ´ x equals 0 or gpyq; in particular, gpfpxqq equals 0 or gpyq.

Otherwise, fpxq ` y “ fpx ` fpyqq, in which case gpfpyqq equals 0 or gpxq. l

Applying Lemma 4 with y “ x we get that gpfpxqq equals either gpxq or 0. In the latter case,
fpfpxqq “ x, so fpxq “ f´1pxq, so gpxq “ 0. In other words, if gpxq ‰ 0, then gpfpxqq “ gpxq.

This means that Lemma 4 reduces to the assertion that at for any x and y, either gpxq “ 0,
gpyq “ 0 or gpxq “ gpyq, as required.

Solution 7. As in the other solutions we establish Lemma 1, and as in Solution 2 we deduce
that either fpxq ´ fpyq “ fpx ´ yq or fpyq ´ fpxq “ fpy ´ xq.

Suppose that x and y have gpxq and gpyq both nonzero. Without loss of generality, we have
fpxq ´ fpyq “ fpx ´ yq. From P px ´ y, f´1pyqq, we deduce that x „ fpx ´ yq ` f´1pyq “

fpxq ´ gpyq.
If fpxq “ fpxq ´ gpyq, then gpyq “ 0 which is a contradiction. Otherwise, f´1pxq “

fpxq ´ gpyq, from which we deduce that gpxq “ gpyq; in other words, there is at most one
nonzero value in the image of g.
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